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Abstract: Designing a secure and reliable mobile agent system is a difficult 
task. The agent operating system (AOS) is a building block that simplifies this 
task. AOS provides common primitives required by most mobile agent 
middleware systems, such as primitives for secure communication, secure and 
tamper-evident agent packaging and agent migration. Different middleware 
processes can use AOS at the same time; effective security mechanisms protect 
AOS resources owned by different middleware processes. Designed as a 
portable and language-neutral middleware layer residing between the mobile 
agent system and the operating system, AOS facilitates interoperability 
between agent platforms and between different implementations of AOS itself. 
AOS has been implemented in both C++ and Java. This paper motivates the 
design of AOS, describes how AOS is used in a mobile agent system, and 
presents performance measures for an agent transfer protocol layered upon 
AOS. 
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1 Introduction 

Over the last decade, various mobile agent middleware systems – also called mobile 
agent systems or mobile agent platforms – have been developed to support (mobile) 
multi-agent applications (White, 1996; Baumann et al., 1997; Johansen et al., 1995; Suri 
et al., 2000; Bellifemine et al., 2001; Tripathi et al., 2001). Mobile agent applications 
depend on middleware mechanisms for agent life-cycle management, communication, 
migration and security. 

Existing mobile agent systems were designed with different goals and foci, e.g., on 
communication, mobility, security, agent model support, management, etc. (Milojicic et 
al., 1999). Most existing agent platforms were implemented as monolithic systems, where 
all functionality is integrated in a single code-base. Even if a system has a more or less 
modular design (e.g., JADE, Bellifemine et al., 2001), it is generally not designed for 
interoperability with other systems or to easily allow for integration of components 
written in different languages. For example, over time, various mechanisms for security 
were designed, such as audit trail based security (Tripathi et al., 2001), but few of these 
mechanisms were adopted by other mobile agent systems. Interoperability specifications 
like FIPA or MASIF define higher-level functionality such as inter-agent communication 
protocols. However, these specifications do not define how low-level protocols for, for 
example, agent migration or communication should be implemented. 

Most agent systems have been implemented in Java, which provides portability and 
some security assurance. Very few systems support agents written in other programming 
languages than Java (Gray et al., 1998). However, for many tasks, support for agents in 
different languages is useful. For example, legacy programs may have to be re-used in 
mobile agents. Also, middleware implementations may benefit from using different 
programming languages internally. For example, some parts of a mobile agent system 
may be implemented in C for performance, while other parts may be implemented in 
Python for rapid prototyping. 

Based on our own experience in constructing two different mobile agent systems 
(Wijngaards et al., 2002; van ‘t Noordende et al., 2004), we identified a minimal set of 
common primitives required by mobile agent middleware systems. Rather than focusing 
on solutions for a specific middleware system, we decided to construct a generic ‘kernel’, 
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called Agent Operating System (AOS), which provides the common primitives required 
for constructing mobile agent systems – including our own, but also those known from 
related work. 

AOS is a common minimal base for constructing higher-level middleware systems. It 
has been implemented in C++ and Java using a single specification of the AOS API and 
the low-level protocols.1 These two implementations were intensively tested for 
interoperability. A performance comparison between the Java and the C++ 
implementation was given in an earlier version of this paper (van ‘t Noordende et al., 
2007b). In this paper, we concentrate on the C++ implementation for brevity. 

AOS is specifically designed as a stand-alone component that can be shared between 
multiple different middleware components (processes) running on the same machine. 
AOS resides in a separate address space from other middleware processes. Having AOS 
run in a separate address space allows for effective protection against faulty or 
compromised middleware components. An access control mechanism guards  
access to data stored in AOS and mediates access to AOS primitives. AOS provides 
language-independent access to its methods and data structures using one or more RPC 
interfaces. This allows different middleware components written in different 
programming languages to access the methods and data structures provided by AOS. 

Besides interoperability and language-independence, a leading requirement when 
designing AOS was security. AOS provides highly secure agent packaging and shipment 
primitives, as well as secure communication primitives that allow for establishing 
authenticated communication channels to remote middleware processes. AOS also 
provides an efficient mechanism for constructing audit trails (Karnik and Tripathi, 2001), 
that allows to detect tampering with an itinerant agent that has migrated over multiple 
machines. 

The paper is organised as follows. The requirements and considerations that drove the 
design of AOS are described in Section 2. Section 3 presents the architectural design of 
AOS in detail. Section 4 describes the design of a secure mobile agent system which was 
built on top of AOS. Section 5 evaluates the performance impact of using the AOS kernel 
written in C++ for implementing an agent migration protocol. Related work is discussed 
in Section 6, and the paper concludes with a discussion in Section 7. 

2 Design motivation 

With the design and implementation of most agent middleware systems, a set of goals 
drive the development process. Most notable are the support for specific agent models, 
programming environments, mobility and security. Although the design goals and 
implementation decisions of mobile agent middleware systems differ, all systems have 
some basic functionality in common. AOS has been designed to provide this common 
functionality in a modular and secure way, to support a wide range of conceivably very 
different agent systems. 

The commonalities found between agent middleware systems can be broadly 
classified as: 
1 mobile agent (code and data) storage and transport 
2 primitives for agent life-cycle management 
3 mechanisms for (secure) communication. 
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In addition, all current multi-agent systems require security mechanisms that allow for 
authentication and authorisation of remote processes, and for integrity verification of 
migrated agents and content. 

AOS should not impose design limitations or a specific model on the mobile agent 
middleware using it. For example, AOS should not require the middleware designer to 
adopt a specific programming language or security infrastructure. In short, AOS should 
be ‘lean and mean’ and provide only the basics needed for implementing (secure) mobile 
agent middleware, but nothing more. This implies that some mechanisms remain to be 
implemented by the agent middleware itself, which is inherent to the idea that many 
mechanisms are middleware specific. Minimality also ensures that the AOS code-base 
becomes manageable and can be implemented in a robust and secure way. 

We decided that the AOS design and specification should be language and operating 
system neutral, so that it can be implemented in any programming language and ported to 
any operating system. AOS should provide language-independent access to its methods. 
The solution we chose is that AOS provides one or more RPC interfaces to expose its 
methods to the middleware, which are accessed by middleware processes using simple 
RPC stubs (Section. 3.1). RPC provides highly effective fault isolation: a breach in a 
client process cannot directly spread to the code of the AOS kernel. This is an important 
reason for designing AOS as a process that runs in a separate address space from other 
middleware processes. By providing several RPC interfaces at the same time, a mobile 
agent designer can choose to use different languages for implementing different 
middleware components, possibly even different components that run at the same time. 

It is important that AOS itself does not rely on external services, such as location 
services. Such reliance could hurt reliability and performance, or possibly even hinder 
other middleware processes that use AOS, since interactions with a remote process can 
block or fail in several ways. Management tasks spanning more than one machine are the 
responsibility of the higher-level middleware system. AOS interacts with other AOS 
processes only if this is required by the agent middleware, e.g., for setting up a 
communication channel or when shipping an agent. 

We consider it convenient that AOS is usable by different middleware systems, 
possibly owned by different users, at the same time. An example is where a single AOS 
kernel is started up at system boot time, to which different middleware processes on this 
system can connect. The advantage of sharing a single AOS kernel between agent 
middleware systems is that there is a need for opening only one or two TCP ports in the 
system’s firewall. Using an AOS kernel that resides at these ports, different middleware 
processes can communicate and ship agents to other middleware processes, without 
requiring separate ports to be opened for each middleware system or application. Because 
AOS may be shared between different middleware processes, it is particularly evident 
that AOS must isolate the resources and data of different middleware processes. An 
efficient and flexible access control mechanism is devised to separate AOS resources 
owned by different middleware processes. The same mechanism is used to implement 
secure internal compartmentalisation of middleware systems (Section 3.2.3). 

Security is very important in mobile agent middleware, both from the perspective of 
the agent as well as of the host. As mobile agents move to foreign hosts (which may not 
always be trusted or trustworthy), their data and code should be protected from 
tampering. AOS comes with an efficient agent data and code integrity verification 
mechanism. On top of this mechanism, agent middleware can implement an efficient 
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audit trail verification mechanism, which helps protect the integrity of agents that migrate 
over multiple hops (Section 4). 

From a host’s perspective, mechanisms are needed to protect hosts from malicious or 
erroneously programmed agents. Sandboxing (for interpreted executables) or jailing (for 
binary executables) (van ‘t Noordende et al., 2007a), are two examples of mechanisms 
that allow for protection of a host from malicious agents. However, the way in which 
mobile agent middleware systems handle host protection and agent lifecycle management 
differs widely. For example, some agent systems use an agent server, in which agents are 
started up as threads, while other agent systems start up each agent as a separate process. 
As a result, it is hard to attain a single, simple model for secure agent execution and 
lifecycle management. For this reason, we decided to leave agent lifecycle management 
mechanisms to the agent middleware to implement, and not to provide agent lifecycle 
management mechanisms in AOS. 

AOS provides a mechanism for authenticating a remote AOS kernel as part of setting 
up a secure, reliable, ordered communication channels. We chose for a channel 
abstraction because, when secrecy is required, cryptographically protected 
communication channels can be implemented much more efficiently than when a 
message oriented approach is used. If an agent middleware requires this, (reliable, 
ordered) messaging primitives can be layered straightforwardly upon the communication 
channels provided by AOS. Internal to AOS, protected communication channels are also 
used for agent migration. 

An important design goal is that AOS should provide mechanisms, but hides its 
internal implementation from users. In case of secure channel setup and migration,  
high-level primitives are provided that allow middleware processes to securely 
authenticate a remote (AOS) process, without having to know about or adopt a specific 
public key infrastructure or cryptographic toolkit. This mechanism is explained in  
Section 3.2.2. 

3 Architecture of the AOS kernel 

3.1 Architectural model of AOS 

AOS intends to provide a ‘common base’ to a range of specific mobile agent middleware 
systems. This common base should be viewed as a kernel component in a layered 
middleware system design. Agent middleware systems can use the AOS kernel for agent 
code and state management, agent migration and communication, and can extend the 
AOS layer with middleware-specific components and services, e.g., for agent life-cycle 
management, middleware management and agent naming services. The architectural 
model of an agent system using AOS is shown in Figure 1. 

AOS provides a means for middleware processes to securely authenticate services 
and other middleware components in a system, to communicate with these components 
and services, and to migrate agents to other locations in a secure way. Middleware 
processes can communicate with each other using socket-like operations over the reliable, 
ordered and secure communication channels provided by AOS. Multiple communication 
channels and agent transfer operations from different middleware processes can be 
multiplexed over a single AOS ‘base channel’ (Section 3.2.2) for efficiency, e.g., to 
amortise expensive connection setup times due to cryptographic handshake protocols. 
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Agent middleware components are distinct processes from an architectural point of 
view (see Figure 1). The middleware is responsible for providing a runtime environment 
to agents: AOS is not directly accessible to agents in general. Agents are executed by the 
agent middleware, which provides them with an API containing middleware-specific 
primitives. 

Figure 1 Example of a layered agent middleware architecture using AOS 

Operating System (OS)

Agent Operating System (AOS) Agent Operating System (AOS)

Operating System (OS)

(network) (network)

Agent Agent Agent Agent Agent

Service ServiceAgent ServerAgent Server Agent Server Agent Server

 

Notes: This example system consists of two agent server processes and one service  
(e.g., a naming service) running on top of AOS on each machine. Mobile agent 
middleware processes communicate with other local or remote middleware 
components using AOS. Agents communicate with their runtime environment 
(e.g., agent server) and do not normally access AOS directly. Example flow of an 
interaction of an agent with a remote service through the middleware stack is 
shown (dotted arrow). 

AOS comes with a clear specification for interoperability. This specification describes the 
API available to higher-level middleware processes, including arguments and semantics. 
The AOS kernel hides differences in the underlying operating system with regard to 
communication interfaces and file system access from the agent middleware, as 
middleware systems generally only need to invoke AOS methods to get agent related 
work done. This increases portability of the middleware system. Agent middleware 
processes run in a different address space from AOS, and access AOS methods  
through RPC calls. Besides providing effective fault isolation (Section 2), RPC offers 
language-independence, as language bindings for different languages can be 
straightforwardly constructed by generating appropriate client stubs to invoke the RPC 
calls. AOS supports multiple so-called RPC dispatchers for different RPC 
implementations, which can run simultaneously. Different middleware components can 
use different RPC interfaces. We currently implemented a binary SunRPC, an XML-
RPC, and a Java-RMI dispatcher. 

3.2 AOS concepts and primitives 

The AOS API provides primitives for agent transport (agent migration) and 
communication. In addition, AOS provides primitives that allow for protecting resources 
owned by different middleware components. The agent transport mechanism provides 
integrity protection of agent code and data, and both the agent migration and the 
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communication related methods provide a simple yet highly effective authentication 
mechanism. These concepts and mechanisms are described in detail in this section. 

3.2.1 Agent containers 

Agent code, data and meta-data (e.g., owner information, time of creation, permissions, 
etc.) are stored as segments (files) in AOS. All segments of an agent are grouped in a data 
structure called the agent container (AC). The AC is an archive which can contain 
immutable segments called persistent segments (for storing, for example, code) and 
mutable segments called transient segments (for storing, for example, temporary data 
files). Persistent segments may not be removed after creation, while transient segments 
may be removed at any time during the agent’s itinerary. Each AC has a Table of 
Contents (ToC). The ToC contains metadata for each segment in the AC, such as creation 
and modification time, a persistency bit, and a secure checksum (SHA-1 hash) over each 
segment. The ToC is exposed to higher level middleware processes, which can use this 
data structure directly or through AOS primitives to find segments (e.g., by name) in the 
AC. Each segment has a distinct entry in the ToC, indexed by a SegmentID. SegmentIDs 
are used by calls to manipulate segments in the AC. 

Before an AC can be shipped to another AOS kernel, it has to be finalised. The 
finalise call synchronises any new or changed content of the AC to disk (allowing for 
crash recovery), updates the checksums in the ToC, and creates a signature over the ToC. 
When AOS ships an AC, it sends this signature along with the AC. When an AC is 
received by an AOS kernel, it verifies the ToC (checksums), and the signature over this 
ToC. A signature over the ToC is also created by the receiving AOS kernel and sent back 
as a receipt; this receipt can be logged by AOS for auditing purposes, if required. The 
ToC data structure can be used to implement an efficient multi-hop audit trail verification 
mechanism that allows for detecting any malicious modifications to an agent’s code or 
data along an agent’s migration path (Section 4). 

3.2.2 Communication endpoints and authentication 

AOS provides a simple socket-like API for communication. Calls include creation and 
deletion of communication endpoints, connect, accept, send, receive and select calls. 
These calls allow for setting up and using secure, reliable, ordered communication 
channels to AOS endpoints. 

AOS comes with a simple but highly effective authentication model based on public 
key cryptography, which is used when connections are set up using AOS. The 
authentication model is based on the concept of Self-certifying Identifiers (ScIDs) 
(Mazières et al., 1999). A ScID is a SHA-1 hash of the public key of an AOS kernel, 
where this kernel has access to the associated private key. 

Endpoints are created by AOS for AC transport and for communication related 
purposes. An AOS endpoint is described by an AOS contact record that contains the AOS 
kernel’s endpoint information (i.e., IPv4/v6 address and port), and the AOS kernel’s 
ScID. Middleware endpoints relative to AOS are identified by an index field (analogous 
to a port number) in the AOS contact record. AOS contact records are used by a 
middleware component to set up a connection or to ship an AC to another agent 
middleware. As part of connection setup, AOS internally verifies that its peer AOS kernel 
has the private key corresponding to the ScID in the AOS contact record. 
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Internally, AOS uses a standard protocol (TLS/SSL) for authentication and  
key-exchange, to set up an efficient, secure, encrypted channel to the peer AOS. The 
middleware can specify a cryptographic cipher suite for the channel at connection setup 
time, to influence the strength of the security protocols used by the internal connection. 
Other than that, the middleware is unaware of the mechanisms used in AOS for secure 
channel setup. Communication channels and agent shipments over the same pair of AOS 
kernels, with the same security properties (i.e., cipher suites), are multiplexed over a 
single AOS ‘base channel’. Re-using base channels to multiplex communication channels 
and do agent shipment operations over, allows for amortising expensive initial secure 
(SSL) connection setup times. 

The advantage of ScIDs over, for example, X.509-based approaches, is that no PKI 
infrastructure is required to bind keys to names, since ScIDs are coupled directly to keys: 
a ScID can be used to authenticate an entity directly. How authentication takes place is 
hidden inside the AOS kernel; the middleware simply specifies a ScID (in an AOS 
contact record) as part of invoking an AOS operation, or obtains the ScID/contact record 
of the peer AOS kernel as a result (e.g., when accepting a connection or when receiving 
an agent). To authenticate a remote AOS kernel, a secure mechanism for passing an AOS 
contact record suffices. Section 4.1 describes an example of how this can be achieved. 
Any middleware authentication mechanism (e.g., using a specific PKI) can be layered on 
top of the AOS abstractions, and systems that do not care about security may even ignore 
the mechanism if they wish so. 

A key property of the AOS authentication model is that the middleware does not have 
to support a specific PKI or even public key cryptography; middleware processes simply 
use AOS contact records, and AOS implements the required mechanism for 
authentication and secure channel setup based on the information available in the contact 
record. Although conceivably some kind of public key cryptography is required for 
setting up an end-to-end authenticated channel on top of AOS (see Section 4), AOS does 
not force the use a particular security model or cryptographic implementation upon the 
middleware system that uses it. 

3.2.3 Secure isolation and sharing of resources in AOS 

One important benefit of sharing a stand-alone AOS kernel between processes is that it 
allows for compartmentalisation of the middleware, and for flexible and efficient 
exchanging and sharing of information stored in AOS between different middleware 
processes. For example, in an agent middleware system that implements multiple agent 
server processes for different agent programming languages, instead of moving the 
content of an AC from a central middleware component to a separate agent server, the 
only thing that needs to be passed is a credential that allows access to this AC through a 
shared AOS kernel. 

AOS provides a simple but effective authorisation credential called a cookie. A 
cookie is a simple authentication token (basically, a hard-to-guess random bit string), 
generated by AOS, which is known to the middleware and must be passed with each 
invocation of an AOS method. Each cookie is associated with a role bitmap. The role 
bitmap specifies which AOS methods may be invoked by the holder of the cookie. For 
brevity, we refer to a cookie/role-bitmap combination as a role for the remainder of this 
text. A role bitmap must be specified when a new cookie (role) is created by AOS and is 
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irrevocably connected to this cookie (role). Roles (cookies) can, if required, be passed 
between processes. 

After role creation, its role bitmap is stored in an internal AOS table, together with an 
(initially empty) list of resources owned (created) by this role. Using roles, AOS can 
verify whether a method invocation is allowed and whether the resource that is referred to 
is owned by the invoking role. An AOS resource (e.g., AC or communication endpoint) 
can only be owned by one role. Child roles (and their subroles and associated resources) 
are owned and can be deleted by their creating role only. Upon role creation, AOS 
verifies that the bitmap for the child role does not exceed the creator’s role bitmap 
(permissions). 

As an example of using roles, consider a central middleware process which receives 
incoming agent ACs using AOS, and then dispatches these to an appropriate agent server. 
The central middleware process creates a new role before it calls an AOS method to 
receive an AC, as part of the procedure for agent transport (Section 4.4). This role’s 
bitmap only allows AC related calls, and no communication related calls. After receiving 
an AC, this AC is now owned by, and only accessible to, this role. After inspecting the 
AC’s content and permitting the agent to enter, the central middleware process passes the 
role’s cookie to an appropriate agent server process which can then retrieve the agent’s 
code and data segments directly using AOS calls, and start the agent. An agent server can 
only access the ACs associated with the roles that it has been given by the central 
middleware process, and can only invoke operations related to these ACs. 

The role model specifically allows construction of modular middleware that adheres 
to the principle of least privilege. Compartmentalisation avoids that a single 
compromised middleware component can exceed its privilege (as a role has only the 
minimum required operations) and prevents compromise of resources owned by different 
middleware components, such as ACs and communication channels. Different 
approaches to compartmentalisation are conceivable; the role model is flexible enough to 
accommodate different compartmentalisation strategies. 

4 Building secure mobile agent middleware using AOS 

AOS can be used in both open and closed systems; there is no specific usage model 
embedded in AOS, nor does AOS depend on any central or shared services between all 
applications. This is illustrated effectively by the fact that AOS is used in the design and 
implementation of two conceptually very different mobile agent systems,  
namely AgentScape (an ‘open’ system) and Mansion (a system that defines closed, 
application-specific worlds (van ‘t Noordende et al., 2004)). In effect, AOS provides 
secure agent transport and communication mechanisms, mediated through an effective 
access control model that allows its usage in different settings. AOS’ minimality ensures 
that different mobile agent systems can make use of AOS. 

As an example of how AOS can be used in a secure way in a concrete system, we 
describe how AOS is used to implement an Agent Transfer Protocol (ATP) in Mansion. 
Mansion has a large emphasis on security, which partially influenced the design of AOS. 
This can be observed from the Mansion ATP discussed in this section. 

We start by describing how secure end-to-end communication can be established 
when using the AOS kernel. Next, some relevant components of Mansion are introduced, 



   

 

   

   
 

   

   

 

   

   372 G.J. van ‘t Noordende et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

which are required for understanding the Mansion ATP. After that, the ATP is described 
in detail. Combined, this section demonstrates how a secure agent middleware can be 
constructed using AOS. 

4.1 End-to-end authentication and secure communication 

In many cases an end-to-end authentication protocol is required to obtain security at the 
middleware layer. Mansion uses ScIDs for authenticating middleware processes. To 
allow for middleware-level end-to-end authentication, the AOS contact record is 
extended to contain a ScID corresponding to the public key of the middleware. The 
resulting data structure is called a Middleware Contact Record (MCR). Another 
middleware may choose a different model. For example, it can include a full (certified) 
X.509 public key certificate (chain) in its version of the MCR. 

Because AOS provides an encrypted transport mechanism, it becomes relatively 
straightforward to implement a challenge-response based authentication protocol on top 
of the AOS channel, based on public key cryptography. In such a protocol, a peer 
middleware process can be sent a challenge using which it can prove that it has access to 
the private key corresponding to its ScID or certificate. Next, both parties should 
exchange (authenticated) messages between each other that contain the AOS endpoint 
information of their own (trusted) AOS kernel. This information can then be compared to 
information about the peer AOS endpoint and ScID, as verified by their own AOS kernel. 
If this check does not take place, an impostor  AOS kernel may sit between the AOS 
kernels used by the middleware processes as a man-in-the-middle, which can decrypt and 
read all information passed over the channel. After AOS endpoint information is 
exchanged and verified as part of a middleware-level end-to-end authentication protocol, 
both parties can trust the underlying AOS channel with regard to confidentiality 
(secrecy), without requiring further cryptography at the middleware level. 

4.2 Agent location service 

Mansion uses a home-based approach for communication (van ‘t Noordende et al., 2004). 
Each agent’s homebase consists of an agent location service (ALS), trusted by the agent’s 
owner, which keeps track of the agent’s contact information. Each agent has a unique, 
self-certifying AgentID, which contains the ScID of this agent’s ALS. Agents use 
AgentIDs to communicate with other agents. The middleware looks up the agent’s 
current contact address in the agent’s ALS (it can find the ALS in a directory service 
using a special name containing the ALS ScID), in order to establish a communication 
channel on the agent’s behalf. 

In Mansion, as in most mobile agent systems, the middleware updates the ALS. 
However, in most systems there is no way for the ALS to verify update requests, so it is 
straightforward to change an agent’s contact information in illegitimate ways, for 
example, to mount a denial of service attack against a particular agent. 

In Mansion, we solved this problem by having the agent’s current middleware (the 
initial middleware is known to the ALS) start an ALS update transaction, which has to be 
committed by both the sending and the receiving middleware. This transaction will only 
be completed after both middleware processes agreed to agent migration. The receiving 
middleware verifies the incoming agent’s AC integrity and possibly some of its content  
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and commits only if this checks out. Either of the two parties may abort the ALS update 
transaction at any time. The importance of this mechanism for this paper is that AOS is 
used to implement agent integrity verification. 

4.3 Audit trails 

AOS provides basic integrity protection, in that it can verify whether an AC’s content 
corresponds to the ToC with which it was shipped. However, AOS cannot directly 
inspect what changes have been made to the AC prior to the previous AOS kernel (from 
now on also referred to as a ‘hop’) that the agent ran on. Because AOS has no knowledge 
of an agent’s specific content, AOS cannot make an informed decision on whether any 
malicious modifications may have been made to the AC along the migration path that the 
agent has followed. 

Audit trails can be used to facilitate verification of integrity over a multihop itinerary. 
The original idea of establishing audit trails for mobile agents was described in Karnik 
and Tripathi (2001) for the Ajanta system. Here, append-only containers are used where 
agents can store data in, and a specific audit trail mechanism is used using which 
tampering with the append-only container can be detected. Compared to the Ajanta 
system, AOS ACs are more flexible, as both persistent and transient files can be stored in 
a single container. Also, the AOS AC is platform-independent whereas the Ajanta 
solution is Java specific. The AOS ToC was specifically designed such that audit trail 
construction and verification can be done very efficiently. 

An audit trail is established by storing the ToC of an incoming AC – together with the 
signature over this ToC created by the middleware that shipped it, and the public key of 
the signer – in a new segment before the AC is finalised and shipped to the next host. By 
retaining the ToCs of all hops that the agent visited, an audit trail is established using 
which all changes made to the agent’s AC can be traced. Because of the ToC design, it is 
straightforward to check for illegitimate changes to an AC using a binary comparison 
algorithm that iterates over all ToCs in the audit trail from first to last. 

The Mansion middleware verifies the audit trail at each hop before the AC is accepted 
and the ALS update committed. This way, an AC that was tampered with can be refused 
and is effectively contained on the middleware where the illegitimate change was made. 
The ALS stores a log of the (ScIDs of) all hops that an agent visited, to allow for 
detection of deletion of part of an audit trail (rollback) in case of cycles in the agent’s 
itinerary – for example, when an agent visits a (malicious) host twice. 

4.4 Overview of the Mansion ATP 

This section gives a detailed overview of the Mansion ATP constructed on top of  
AOS. The Mansion ATP combines the audit trail verification mechanism and the 
transaction-based ALS update mechanism explained in the previous section. In particular, 
agents are only migrated officially by means of an ALS update (where an agent’s contact 
information in the ALS indicates the agent’s official whereabouts at a particular time) if 
both the sending and receiving middleware agree on the agent’s integrity. Integrity 
verification combines AOS-level AC integrity verification with middleware-level audit 
trail verification. Note that the ATP may also be aborted for other reasons than AC 
integrity violation – e.g., an incoming agent’s programming language may not be 
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supported by the receiving host, or the receiving host may have too few resources 
available for running the agent. 

The Mansion middleware (MMW) waits at an ATP endpoint for incoming requests. 
The ATP endpoint is a regular communication endpoint, to which other MMW processes 
can connect using an AOS call (Section 4.1). The middleware makes a preliminary 
choice on whether it allows receipt of an AC, based on authentication of the peer process 
and on information embedded in an initial ATP request message. 

The ATP protocol is outlined in Figure 2. Below, we give a detailed outline of the 
protocol including AC transfer and audit trail verification. Performance measurements of 
most steps in this protocol are given in Section 5. The Mansion ATP, including an ALS 
update protocol and audit trail verification protocol, consists of the following steps. 

• When a decision is made (typically, by the agent) to migrate an agent, middleware A 
suspends the agent and all its communication queues, finalises the agent’s AC and 
initiates the ALS update transaction. As part of this, the middleware registers the 
intended target middleware’s ScID in the ALS (1). 

• Next, a connection is made to the ATP endpoint of middleware B; middleware A 
provides information (e.g., programming language, resource requirements) about the 
agent to the target middleware through an init message (2). Based on the init 
message, the target middleware decides if it is willing to receive the agent. 

• If the target middleware is willing to receive the agent, it calls a method on the AOS 
kernel which creates an endpoint in AOS to which the agent can be sent (3). A 
unique ‘transaction identifier’ (XID) is also created by AOS, which has to be used by 
the sending middleware to ship the AC; this XID prevents that anyone can send an 
arbitrary AC to an AOS kernel, and enforces that a middleware-level decision to 
accept an agent precedes shipment/receipt of an AC. The XID, along with the AOS 
ATP endpoint information, is sent to the client (4). 

• The sending middleware signs the ToC of the finalised AC using its own key. The 
ToC of the finalised AC is obtained by reading out segment 0 of the AC using an 
AOS method. Middleware A sends the signature over the ToC and its public key to 
middleware B for verification (5), while simultaneously instructing its AOS kernel to 
ship the AC (6). 

• Middleware B invokes a wait_ac call on AOS. This call returns an identifier for the 
AC after the AC was received and verified correctly (7). An error will be returned if 
there was any problem with the AC. After receiving a correct AC, its (verified) ToC 
can be read out by middleware B by reading segment 0 of the agent’s AC. 
Middleware B can now verify that the signature it received from middleware A in 
Step 5 was made over this AC’s ToC. 

• If all this checks out, the Mansion middleware searches the AC (using a naming 
convention) for segments containing earlier ToCs. These segments are numbered 
sequentially and the Mansion middleware can compare the signed ToCs iteratively 
using the audit trail verification procedure outlined above. 

• If audit trail verification checks out, and if there are no further problems with the 
content of the incoming AC, the receiving middleware signs the ToC and sends the 
signature back to the sending middleware as a receipt (8). Middleware A only 
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commits the migration after it received the receipt from Middleware B. Finally, both 
parties commit (or possibly abort, in case of problems) the ALS update transaction 
(9) to complete the migration. 

• Before the agent is started, middleware B should store the ToC, key and signature 
over the ToC created by middleware A, as persistent segments in the AC, to form the 
next component of the agent’s audit trail. 

The steps outlined above ensure that agent integrity is verified at all migration steps and 
that each middleware that sends an agent to another middleware process signs the agent’s 
AC using its private key. In addition, AC integrity verification, ToC signature 
verification and storage of this information in the AC are required parts of the ALS 
update protocol, in which both sending and receiving parties must commit the update. 
This ensures that both middleware processes sign the AC’s ToC, that a verifiable receipt 
can be kept, and that a valid ToC is stored in the agent’s audit trail. 

Figure 2 Implementation of the Mansion hand-off protocol using AOS 
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5 Performance of the Mansion ATP protocol using AOS 

For a central component such as AOS, which is intended to be used for all interprocess 
communication, mobile agent code/data management and migration operations and 
performance is highly important. In an earlier paper (van ‘t Noordende et al., 2007b), 
communication throughput and scalability have been reported for two implementations of 
the AOS kernel, one in Java and one in C++. These measurements showed good 
scalability results (van ‘t Noordende et al., 2007b). We do not repeat these measurements 
here; instead, we focus on agent transport functionality and present measurements of 
AOS while performing the ATP outlined in Section 4. We also present some 
measurements of the latency incurred when communicating over AOS, which 
complement the measurements described in van ‘t Noordende et al. (2007b). 

The tests were run on a dedicated cluster containing 2.4 GHz dual-CPU/dual-core 
AMD Opteron DP 280 compute nodes with 4 GB of memory, running a Linux 2.6.18 
kernel on an XFS file system using a 1 G Ethernet network, each with a WD Caviar RE, 
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7200rpm hard-disk with 16 MB cache. The tests were run with a modified C++ AOS 
kernel that included microsecond timers. The Mansion middleware is written in C and a 
SunRPC dispatcher was used to invoke methods on AOS. All AOS connections were 
configured to use 128 bits AES encryption with SHA-1 message authentication. 

A test setup was created, consisting of three Mansion middleware processes, each 
running on a separate node in the cluster. Agents were injected into the Mansion system, 
transferred to the first middleware and subsequently transferred through two additional 
middleware processes before being retrieved by its owner. Timing results were taken at 
each of these nodes. The ALS was configured to use AOS for communication and ran on 
a different machine than the middleware processes. 

We ran tests of the ATP using ACs of three sizes: 500 KB, 1 MB and 5 MB, 
respectively. Segments in the AC contained 5,120 bytes of random data, with the 500 KB 
AC containing 100 segments, the 1 MB AC containing 200 segments and the 5 MB AC 
containing 1,000 segments. The tests were run up to seven times for each AC size. The 
measurements selected for this paper are median measurements or close to average. We 
observed some outliers in the ATP tests. Inspection of the middleware log files showed 
that in these cases, concurrent activity took place in the middleware – for example, a ToC 
signature was received and verified in the middleware, while AOS was busy unzipping an 
AC, corresponding to the concurrent Steps 5 and 6 in the Mansion ATP protocol outlined 
in Subsection 4.4. 

Since the Mansion middleware and AOS are concurrently running processes which 
are multithreaded by design, some interference is inevitable for measurements of the 
Mansion ATP protocol in a live system. However, since such outliers do not represent 
pure AOS performance, we chose median values to avoid the effect of those outliers in 
some cases. 

5.1 Middleware to AOS RPC communication overhead 

In van ‘t Noordende et al. (2007b), throughput measurements and scalability have been 
measured, which show good scalability in that the total throughput remains constant 
independent of the number of concurrent sends or AC shipments over a single  
AOS-to-AOS base channel. However, even though scalability is important for a kernel 
that is to be used by multiple processes concurrently, baseline performance in terms of 
latency and throughput are probably at least as important for most system designers. 

An important constraint with regard to AOS performance is the fact that RPC calls 
are made to invoke AOS operations. For heavyweight operations, such as an AC transfer, 
the added overhead is small compared to the overall cost of the (remote) operation and 
can be mostly neglected. However, for tasks such as communication over an AOS 
channel, the additional RPC overhead increases latency and decreases throughput. To 
gain insight in this aspect, we measured the roundtrip time of a single invocation of a 
local AOS ‘ping’ method. The measurements include the time it takes the (multithreaded) 
SunRPC dispatcher to handle the request, verify the cookie and invoke the native ‘ping’ 
method, which returns a 32 bit integer. The average roundtrip time of this RPC call is 129 
μsec. For comparison, a simple getpid() system call on the same machine takes 7 μsec on 
average. Roughly speaking, about 122 μsec is added when using an AOS primitive, 
compared to using an OS primitive (e.g., sockets) directly. 
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Clearly, because of RPC related overhead, AOS communication is not an optimal 
solution when low-latency, high-bandwidth communication is required; instead, 
communication over AOS should be considered primarily useful in cases where there are 
limits on the number of usable TCP ports, e.g., when a machine resides behind a firewall. 

5.2 Finalise costs 

Prior to shipping an AC, the AC must be finalised to ensure that the AC’s ToC is 
generated and that all segments are stored safely on disk. The latter is for crash-recovery 
reasons; finalise acts as a checkpoint of the agent’s state. An AC is stored in a zip file 
internally, to facilitate efficient transport over the network. Finalise constructs a ToC of 
the AC and signs it, prior to shipping it to another AOS kernel. Finalise syncs the AC to 
disk for crash recovery reasons. 

Table 1 shows a microbenchmark of the finalise costs of agent containers of 500 KB, 
1 MB and 5 MB containing random data. ToC checksumming and signing cause little 
overhead, even for large ACs. Creating a zip file and sync’ing it to disk cause substantial 
overhead; this can be explained because zipping requires that each segment is copied into 
the zip file, possibly after compression. Zipping overhead is nearly linear to the total AC 
size. Sync’ing the resulting zip file to disk is also rather expensive. 
Table 1 Breakdown of finalise cost (in milliseconds) for ACs using the C++ kernel 

 500 KB 1 MB 5 MB 

Create ToC 8.4 9.1 14.9 
Sign ToC 7.7 8.1 11.7 
Zip AC 34.2 66.4 321.9 
Sync AC 21.7 36.3 102.7 
Total 87.6 127.5 450.2 

Note: Results for the run with median total cost. 

As mobile agents may migrate often during their lifetime, AC finalise and transfer cost 
can increase the time for an agent to achieve its task considerably and may influence 
scalability of the mobile agent middleware as a whole. A straightforward optimisation for 
performance is to have AOS ship segment files to another AOS kernel directly, without 
zipping the files first, in an FTP-like manner. Note that this could conceivably hurt 
performance in cases where bandwidth is limited; in such cases, the compression offered 
by zip files is an advantage. Another straightforward optimisation for performance is to 
let go of the crash recovery assurance by means of the fsync system call. 

5.3 Overhead of the Mansion ATP using AOS 

In this section, we describe the performance of the Mansion ATP protocol outlined in 
Subsection 4.4. In these tests, we measure the ATP overhead after the agent has migrated 
one hop; thus, the receiving middleware must verify a two-level audit trail. 

Table 2 shows the time it takes for the most important steps in the Mansion ATP. We 
measure the total time it takes to ship an AC of 500 KB, 1 MB or 5 MB consisting of 
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segments of 5 K containing random data, as well as some of this operation’s component 
costs. 

The overall time for the ATP to complete for a 500 KB agent container is 171.9 msec. 
For a 1 MB AC, the shipping time is 350.6 msec. and for a 5 MB AC this is 726.7 msec. 
This time does not include the finalise time (taken from Table 1), but does include 
channel setup, shipment of the zip file, receipt, extraction and verification of the AC and 
the audit trail at the receiving side, verification of the returned ToC signature and 
committing the ALS update. 
Table 2 Performance of an AOS-based ATP with agent containers of different sizes 

 Time (msec)  
Protocol step 

 500 K 1 MB 5 MB 
S Finalise AC  87.6 127.5 450.2 
S MMW sign ToC  7.7 8.1 9.0 
R AOS extract AC + verify ToC  25.7 215.0 565.6 
R MMW check ToC signature  0.8 1.4 2.5 
R Audit trail verification  1.6 2.6 4.2 
S AOS ship_ac completion  68.4 265.2 636.4 
S MMW-level ATP completion  171.9 350.6 726.7 

Note: S and R indicate AC sending, resp. receiving side. 

Signing and verifying ToC signatures requires public key cryptography. As can be seen 
from Table 2, the overhead of these operations, as well as for audit trail verification, is 
negligible compared to the overall migration cost. The overall migration cost is 
dominated by zip and unzip times. Unzip times are the major component of the AOS 
extract AC and verify ToC measurement shown in Table 2. AOS-level AC extraction and 
ToC verification times are not completely linear with respect to the AC size. The 
complete AOS ship_ac call only returns if the receiving side has received, extracted  
and verified the AC. Therefore, the AOS ship_ac completion measurements are 
dominated by AC extraction cost. The overall MMW-level ATP completion time is 
somewhat longer than the AOS ship_ac completion time which it includes. This is caused 
by the additional interactions required at the middleware level, compared to the  
AOS-internal interactions. 

The AOS ToC design was optimised to make efficient (binary) comparison between 
ToC entries of different ToCs in an audit trail possible. As can be observed from Table 2, 
audit trail verification poses a negligible overhead compared to the overall overhead: 
between 1.6 and 4.2 msec. for a 2-level audit trail, depending on AC size; indeed, this is 
very efficient. Note that for ToC comparison, only access to ToC segments is required, 
not to other segments. This is because correspondence of the segments in the AC with the 
ToC entries of these segments has already been verified by AOS (wait_ac). 

In all, Table 2 shows that the Mansion ATP can be implemented with little overhead 
compared to the basic cost for finalising an AC and transferring it to another AOS kernel 
over a secure AOS channel. The major cost component is zipping and unzipping the AC, 
as well as sync’ing the AC to disk. ToC and audit trail verification mechanisms are very 
efficient and cause negligible overhead, even though a 5M AC consists of a very large 
number of segments. 
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6 Related work 

AOS has a design which is not directly comparable to existing work. AOS is not an agent 
middleware itself, but rather a middleware building block. In this section, we describe 
related work that is partially related to AOS or the AOS requirements. 

The FIPA (http://www.fipa.org) standard specification includes a series of documents 
describing the functionality and operation of agent middleware. FIPA compliant agent 
middleware can interoperate with each other, e.g., agents can exchange messages, interact 
with, and reason about agents on other middleware. One of the most widely used FIPA 
compliant agent middleware is JADE (Bellifemine et al., 2001). The latest middleware 
design (version 3.5 as of today) is modular in design and many parties (universities and 
companies) have contributed to JADE. The middleware is implemented in Java and 
supports a Java API for agent development. It is a complete self-relying system, with 
integrated location and yellow pages services. This is different from the AOS perspective 
to agent middleware, where services are considered application specific and can be 
arbitrary location or yellow pages services such as DNS or LDAP servers. 

Ajanta (Karnik and Tripathi, 2001) is designed to include a number of security 
primitives and architectural features to protect both the host and the agent from malicious 
actions. It includes amongst others a similar concept as the agent container in AOS, 
allowing for an audit trail mechanism resembling the one outlined in this paper and in 
van ‘t Noordende et al. (2004). However, Ajanta is completely Java-based and is not 
designed to incorporate or interact with other software components or services, while 
AOS is platform (middleware) and language-independent. 

The Tacoma (Johansen et al., 1995) project focuses on operating system support for 
mobile agents. In that respect, it has many similar design goals as AOS by providing  
low-level abstractions for, in particular, data storage and agent mobility. Although it also 
provides a simple container abstraction, called a ‘briefcase’, only very simple protection 
mechanisms were implemented. Tacoma supports multiple programming languages for 
agents, in particular C and Tcl/Tk. 

The MadKit agent platform architecture (Gutknecht and Ferber, 2000) aims to 
provide a generic multi-agent platform. The architecture is based on a minimalist agent 
kernel decoupled from specific agency models. Although there are similarities with the 
design goals of the architectural model with AOS, the design and implementation are 
quite different. The aim of MadKit is to allow a developer to implement its own agent 
architectures. Basic services like message passing, migration, monitoring or management 
are provided by platform agents. MadKit comes with a set of ‘containers’, realising 
different execution environments for running an application. Alternatively, AOS aims to 
provide a minimal, secure middleware layer for constructing mobile agent systems, and is 
not directly used by agents. 

7 Discussion 

This paper discusses the design requirements, implementation and performance of the 
AOS kernel. AOS is a portable middleware building block specifically aimed at 
constructing mobile agent middleware systems. It can be used by different middleware 
processes, possibly of different users, independently, where each such process may be 
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implemented in a different language. Programming language flexibility is facilitated by 
the use of different RPC dispatchers, each providing a method invocation interface 
suitable for a specific language. The AOS design allows for secure sharing of a single 
AOS kernel between different middleware processes. A simple but effective access 
control mechanism ensures that different middleware processes cannot access or 
compromize AOS resources of other middleware processes. 

AOS provides a minimal set of primitives that are common to mobile agent systems, 
in particular for agent code and data storage, agent transport, and communication 
between middleware components. AOS provides basic security services which can be 
used by higher-level middleware layers to construct more elaborate security, such as 
authentication mechanisms, secure agent transport, and mobile agent audit trails. 

AOS offers a flexible basis for the construction of secure mobile agent systems and 
for deploying multiple services or middleware processes at the same time on a single 
AOS kernel. Support for secure middleware that internally consists of components 
written in different languages is a novel contribution of our work. The access control 
model based on roles allows for applying the principle of least privilege within a 
modularly designed agent system and offers separation of resources in scenario’s where 
AOS is shared between different mobile agent systems or middleware components. 

Two implementations of AOS (in Java and C++) have been built, used, and tested for 
interoperability. Scalability measurements of the AOS in an earlier paper showed that 
AOS scales well with concurrent use. This paper shows that it is feasible to build a secure 
mobile agent transfer protocol on top of the abstractions provided by AOS. 
Measurements show that performance of the Mansion ATP is dominated by disk I/O 
related costs, rather than by security related costs. Measurements show that Mansion’s 
audit trail verification mechanism can be implemented on top of AOS very efficiently. 
AOS is used in two different agent systems designed in our department, which illustrates 
that AOS provides the right level of abstraction to construct diverse mobile agent systems 
– even if these systems have rather different requirements or designs. 
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1 The AOS specification can be requested from the authors. 


