

 Int. J. Intelligent Information and Database Systems, Vol. 3, No. 4, 2009 363

 Copyright © 2009 Inderscience Enterprises Ltd.

Constructing secure mobile agent systems using the
agent operating system

Guido J. van ‘t Noordende*,
Benno J. Overeinder, Reinier J. Timmer,
Frances M.T. Brazier and
Andrew S. Tanenbaum
Department of Computer Sciences, Vrije Universiteit Amsterdam,
de Boelelaan 1081, 1081HV, Amsterdam, The Netherlands
E-mail: guido@cs.vu.nl
E-mail: bjo@cs.vu.nl
E-mail: rjtimmer@cs.vu.nl
E-mail: frances@cs.vu.nl
E-mail: ast@cs.vu.nl
*Corresponding author

Abstract: Designing a secure and reliable mobile agent system is a difficult
task. The agent operating system (AOS) is a building block that simplifies this
task. AOS provides common primitives required by most mobile agent
middleware systems, such as primitives for secure communication, secure and
tamper-evident agent packaging and agent migration. Different middleware
processes can use AOS at the same time; effective security mechanisms protect
AOS resources owned by different middleware processes. Designed as a
portable and language-neutral middleware layer residing between the mobile
agent system and the operating system, AOS facilitates interoperability
between agent platforms and between different implementations of AOS itself.
AOS has been implemented in both C++ and Java. This paper motivates the
design of AOS, describes how AOS is used in a mobile agent system, and
presents performance measures for an agent transfer protocol layered upon
AOS.

Keywords: secure agent middleware design; mobile agent systems; security;
agent transfer protocol; ATP; audit trails.

Reference to this paper should be made as follows: van ‘t Noordende, G.J.,
Overeinder, B.J., Timmer, R.J., Brazier, F.M.T. and Tanenbaum, A.S. (2009)
‘Constructing secure mobile agent systems using the agent operating system’,
Int. J. Intelligent Information and Database Systems, Vol. 3, No. 4,
pp.363–381.

Biographical notes: Guido van ‘t Noordende is currently finishing his PhD
work on the Mansion mobile agent system, which he designed at the Vrije
Universiteit Amsterdam. He is currently affiliated with the University of
Amsterdam where he does research on security of distributed systems, in
particular, on security and privacy in grid systems.

Benno Overeinder received his PhD at the University of Amsterdam and is
currently a Senior Researcher at NLnet Labs, a non-profit R&D organisation
that develops open standards and open source software for internet protocols.
His former affiliation was Assistant Professor in the IIDS group at the Vrije
Universiteit Amsterdam.

 364 G.J. van ‘t Noordende et al.

Reinier Timmer received his MSc from the Vrije Universiteit Amsterdam. He
was a Scientific Programmer in the IIDS Group, and is currently working for
Thales Netherlands still working on and with agent middleware systems.

Frances Brazier was a Full Professor at the Vrije Universiteit Amsterdam
before she and the IIDS Group moved to the TU Delft, where she is a Full
Professor now. Her group’s research focuses on (self-) management of large
scale distributed autonomous systems. AgentScape is a mobile agent
middleware designed to support large scale distributed autonomous systems.

Andrew Tanenbaum is a Full Professor at the Vrije Universiteit Amsterdam
and heads the Computer Systems group, which does research on distributed
systems, operating systems and security. He is the author of a number of widely
used books on operating systems, networking and distributed systems.

1 Introduction

Over the last decade, various mobile agent middleware systems – also called mobile
agent systems or mobile agent platforms – have been developed to support (mobile)
multi-agent applications (White, 1996; Baumann et al., 1997; Johansen et al., 1995; Suri
et al., 2000; Bellifemine et al., 2001; Tripathi et al., 2001). Mobile agent applications
depend on middleware mechanisms for agent life-cycle management, communication,
migration and security.

Existing mobile agent systems were designed with different goals and foci, e.g., on
communication, mobility, security, agent model support, management, etc. (Milojicic et
al., 1999). Most existing agent platforms were implemented as monolithic systems, where
all functionality is integrated in a single code-base. Even if a system has a more or less
modular design (e.g., JADE, Bellifemine et al., 2001), it is generally not designed for
interoperability with other systems or to easily allow for integration of components
written in different languages. For example, over time, various mechanisms for security
were designed, such as audit trail based security (Tripathi et al., 2001), but few of these
mechanisms were adopted by other mobile agent systems. Interoperability specifications
like FIPA or MASIF define higher-level functionality such as inter-agent communication
protocols. However, these specifications do not define how low-level protocols for, for
example, agent migration or communication should be implemented.

Most agent systems have been implemented in Java, which provides portability and
some security assurance. Very few systems support agents written in other programming
languages than Java (Gray et al., 1998). However, for many tasks, support for agents in
different languages is useful. For example, legacy programs may have to be re-used in
mobile agents. Also, middleware implementations may benefit from using different
programming languages internally. For example, some parts of a mobile agent system
may be implemented in C for performance, while other parts may be implemented in
Python for rapid prototyping.

Based on our own experience in constructing two different mobile agent systems
(Wijngaards et al., 2002; van ‘t Noordende et al., 2004), we identified a minimal set of
common primitives required by mobile agent middleware systems. Rather than focusing
on solutions for a specific middleware system, we decided to construct a generic ‘kernel’,

 Constructing secure mobile agent systems using the agent operating system 365

called Agent Operating System (AOS), which provides the common primitives required
for constructing mobile agent systems – including our own, but also those known from
related work.

AOS is a common minimal base for constructing higher-level middleware systems. It
has been implemented in C++ and Java using a single specification of the AOS API and
the low-level protocols.1 These two implementations were intensively tested for
interoperability. A performance comparison between the Java and the C++
implementation was given in an earlier version of this paper (van ‘t Noordende et al.,
2007b). In this paper, we concentrate on the C++ implementation for brevity.

AOS is specifically designed as a stand-alone component that can be shared between
multiple different middleware components (processes) running on the same machine.
AOS resides in a separate address space from other middleware processes. Having AOS
run in a separate address space allows for effective protection against faulty or
compromised middleware components. An access control mechanism guards
access to data stored in AOS and mediates access to AOS primitives. AOS provides
language-independent access to its methods and data structures using one or more RPC
interfaces. This allows different middleware components written in different
programming languages to access the methods and data structures provided by AOS.

Besides interoperability and language-independence, a leading requirement when
designing AOS was security. AOS provides highly secure agent packaging and shipment
primitives, as well as secure communication primitives that allow for establishing
authenticated communication channels to remote middleware processes. AOS also
provides an efficient mechanism for constructing audit trails (Karnik and Tripathi, 2001),
that allows to detect tampering with an itinerant agent that has migrated over multiple
machines.

The paper is organised as follows. The requirements and considerations that drove the
design of AOS are described in Section 2. Section 3 presents the architectural design of
AOS in detail. Section 4 describes the design of a secure mobile agent system which was
built on top of AOS. Section 5 evaluates the performance impact of using the AOS kernel
written in C++ for implementing an agent migration protocol. Related work is discussed
in Section 6, and the paper concludes with a discussion in Section 7.

2 Design motivation

With the design and implementation of most agent middleware systems, a set of goals
drive the development process. Most notable are the support for specific agent models,
programming environments, mobility and security. Although the design goals and
implementation decisions of mobile agent middleware systems differ, all systems have
some basic functionality in common. AOS has been designed to provide this common
functionality in a modular and secure way, to support a wide range of conceivably very
different agent systems.

The commonalities found between agent middleware systems can be broadly
classified as:
1 mobile agent (code and data) storage and transport
2 primitives for agent life-cycle management
3 mechanisms for (secure) communication.

 366 G.J. van ‘t Noordende et al.

In addition, all current multi-agent systems require security mechanisms that allow for
authentication and authorisation of remote processes, and for integrity verification of
migrated agents and content.

AOS should not impose design limitations or a specific model on the mobile agent
middleware using it. For example, AOS should not require the middleware designer to
adopt a specific programming language or security infrastructure. In short, AOS should
be ‘lean and mean’ and provide only the basics needed for implementing (secure) mobile
agent middleware, but nothing more. This implies that some mechanisms remain to be
implemented by the agent middleware itself, which is inherent to the idea that many
mechanisms are middleware specific. Minimality also ensures that the AOS code-base
becomes manageable and can be implemented in a robust and secure way.

We decided that the AOS design and specification should be language and operating
system neutral, so that it can be implemented in any programming language and ported to
any operating system. AOS should provide language-independent access to its methods.
The solution we chose is that AOS provides one or more RPC interfaces to expose its
methods to the middleware, which are accessed by middleware processes using simple
RPC stubs (Section. 3.1). RPC provides highly effective fault isolation: a breach in a
client process cannot directly spread to the code of the AOS kernel. This is an important
reason for designing AOS as a process that runs in a separate address space from other
middleware processes. By providing several RPC interfaces at the same time, a mobile
agent designer can choose to use different languages for implementing different
middleware components, possibly even different components that run at the same time.

It is important that AOS itself does not rely on external services, such as location
services. Such reliance could hurt reliability and performance, or possibly even hinder
other middleware processes that use AOS, since interactions with a remote process can
block or fail in several ways. Management tasks spanning more than one machine are the
responsibility of the higher-level middleware system. AOS interacts with other AOS
processes only if this is required by the agent middleware, e.g., for setting up a
communication channel or when shipping an agent.

We consider it convenient that AOS is usable by different middleware systems,
possibly owned by different users, at the same time. An example is where a single AOS
kernel is started up at system boot time, to which different middleware processes on this
system can connect. The advantage of sharing a single AOS kernel between agent
middleware systems is that there is a need for opening only one or two TCP ports in the
system’s firewall. Using an AOS kernel that resides at these ports, different middleware
processes can communicate and ship agents to other middleware processes, without
requiring separate ports to be opened for each middleware system or application. Because
AOS may be shared between different middleware processes, it is particularly evident
that AOS must isolate the resources and data of different middleware processes. An
efficient and flexible access control mechanism is devised to separate AOS resources
owned by different middleware processes. The same mechanism is used to implement
secure internal compartmentalisation of middleware systems (Section 3.2.3).

Security is very important in mobile agent middleware, both from the perspective of
the agent as well as of the host. As mobile agents move to foreign hosts (which may not
always be trusted or trustworthy), their data and code should be protected from
tampering. AOS comes with an efficient agent data and code integrity verification
mechanism. On top of this mechanism, agent middleware can implement an efficient

 Constructing secure mobile agent systems using the agent operating system 367

audit trail verification mechanism, which helps protect the integrity of agents that migrate
over multiple hops (Section 4).

From a host’s perspective, mechanisms are needed to protect hosts from malicious or
erroneously programmed agents. Sandboxing (for interpreted executables) or jailing (for
binary executables) (van ‘t Noordende et al., 2007a), are two examples of mechanisms
that allow for protection of a host from malicious agents. However, the way in which
mobile agent middleware systems handle host protection and agent lifecycle management
differs widely. For example, some agent systems use an agent server, in which agents are
started up as threads, while other agent systems start up each agent as a separate process.
As a result, it is hard to attain a single, simple model for secure agent execution and
lifecycle management. For this reason, we decided to leave agent lifecycle management
mechanisms to the agent middleware to implement, and not to provide agent lifecycle
management mechanisms in AOS.

AOS provides a mechanism for authenticating a remote AOS kernel as part of setting
up a secure, reliable, ordered communication channels. We chose for a channel
abstraction because, when secrecy is required, cryptographically protected
communication channels can be implemented much more efficiently than when a
message oriented approach is used. If an agent middleware requires this, (reliable,
ordered) messaging primitives can be layered straightforwardly upon the communication
channels provided by AOS. Internal to AOS, protected communication channels are also
used for agent migration.

An important design goal is that AOS should provide mechanisms, but hides its
internal implementation from users. In case of secure channel setup and migration,
high-level primitives are provided that allow middleware processes to securely
authenticate a remote (AOS) process, without having to know about or adopt a specific
public key infrastructure or cryptographic toolkit. This mechanism is explained in
Section 3.2.2.

3 Architecture of the AOS kernel

3.1 Architectural model of AOS

AOS intends to provide a ‘common base’ to a range of specific mobile agent middleware
systems. This common base should be viewed as a kernel component in a layered
middleware system design. Agent middleware systems can use the AOS kernel for agent
code and state management, agent migration and communication, and can extend the
AOS layer with middleware-specific components and services, e.g., for agent life-cycle
management, middleware management and agent naming services. The architectural
model of an agent system using AOS is shown in Figure 1.

AOS provides a means for middleware processes to securely authenticate services
and other middleware components in a system, to communicate with these components
and services, and to migrate agents to other locations in a secure way. Middleware
processes can communicate with each other using socket-like operations over the reliable,
ordered and secure communication channels provided by AOS. Multiple communication
channels and agent transfer operations from different middleware processes can be
multiplexed over a single AOS ‘base channel’ (Section 3.2.2) for efficiency, e.g., to
amortise expensive connection setup times due to cryptographic handshake protocols.

 368 G.J. van ‘t Noordende et al.

Agent middleware components are distinct processes from an architectural point of
view (see Figure 1). The middleware is responsible for providing a runtime environment
to agents: AOS is not directly accessible to agents in general. Agents are executed by the
agent middleware, which provides them with an API containing middleware-specific
primitives.

Figure 1 Example of a layered agent middleware architecture using AOS

Operating System (OS)

Agent Operating System (AOS) Agent Operating System (AOS)

Operating System (OS)

(network) (network)

Agent Agent Agent Agent Agent

Service ServiceAgent ServerAgent Server Agent Server Agent Server

Notes: This example system consists of two agent server processes and one service
(e.g., a naming service) running on top of AOS on each machine. Mobile agent
middleware processes communicate with other local or remote middleware
components using AOS. Agents communicate with their runtime environment
(e.g., agent server) and do not normally access AOS directly. Example flow of an
interaction of an agent with a remote service through the middleware stack is
shown (dotted arrow).

AOS comes with a clear specification for interoperability. This specification describes the
API available to higher-level middleware processes, including arguments and semantics.
The AOS kernel hides differences in the underlying operating system with regard to
communication interfaces and file system access from the agent middleware, as
middleware systems generally only need to invoke AOS methods to get agent related
work done. This increases portability of the middleware system. Agent middleware
processes run in a different address space from AOS, and access AOS methods
through RPC calls. Besides providing effective fault isolation (Section 2), RPC offers
language-independence, as language bindings for different languages can be
straightforwardly constructed by generating appropriate client stubs to invoke the RPC
calls. AOS supports multiple so-called RPC dispatchers for different RPC
implementations, which can run simultaneously. Different middleware components can
use different RPC interfaces. We currently implemented a binary SunRPC, an XML-
RPC, and a Java-RMI dispatcher.

3.2 AOS concepts and primitives

The AOS API provides primitives for agent transport (agent migration) and
communication. In addition, AOS provides primitives that allow for protecting resources
owned by different middleware components. The agent transport mechanism provides
integrity protection of agent code and data, and both the agent migration and the

 Constructing secure mobile agent systems using the agent operating system 369

communication related methods provide a simple yet highly effective authentication
mechanism. These concepts and mechanisms are described in detail in this section.

3.2.1 Agent containers

Agent code, data and meta-data (e.g., owner information, time of creation, permissions,
etc.) are stored as segments (files) in AOS. All segments of an agent are grouped in a data
structure called the agent container (AC). The AC is an archive which can contain
immutable segments called persistent segments (for storing, for example, code) and
mutable segments called transient segments (for storing, for example, temporary data
files). Persistent segments may not be removed after creation, while transient segments
may be removed at any time during the agent’s itinerary. Each AC has a Table of
Contents (ToC). The ToC contains metadata for each segment in the AC, such as creation
and modification time, a persistency bit, and a secure checksum (SHA-1 hash) over each
segment. The ToC is exposed to higher level middleware processes, which can use this
data structure directly or through AOS primitives to find segments (e.g., by name) in the
AC. Each segment has a distinct entry in the ToC, indexed by a SegmentID. SegmentIDs
are used by calls to manipulate segments in the AC.

Before an AC can be shipped to another AOS kernel, it has to be finalised. The
finalise call synchronises any new or changed content of the AC to disk (allowing for
crash recovery), updates the checksums in the ToC, and creates a signature over the ToC.
When AOS ships an AC, it sends this signature along with the AC. When an AC is
received by an AOS kernel, it verifies the ToC (checksums), and the signature over this
ToC. A signature over the ToC is also created by the receiving AOS kernel and sent back
as a receipt; this receipt can be logged by AOS for auditing purposes, if required. The
ToC data structure can be used to implement an efficient multi-hop audit trail verification
mechanism that allows for detecting any malicious modifications to an agent’s code or
data along an agent’s migration path (Section 4).

3.2.2 Communication endpoints and authentication

AOS provides a simple socket-like API for communication. Calls include creation and
deletion of communication endpoints, connect, accept, send, receive and select calls.
These calls allow for setting up and using secure, reliable, ordered communication
channels to AOS endpoints.

AOS comes with a simple but highly effective authentication model based on public
key cryptography, which is used when connections are set up using AOS. The
authentication model is based on the concept of Self-certifying Identifiers (ScIDs)
(Mazières et al., 1999). A ScID is a SHA-1 hash of the public key of an AOS kernel,
where this kernel has access to the associated private key.

Endpoints are created by AOS for AC transport and for communication related
purposes. An AOS endpoint is described by an AOS contact record that contains the AOS
kernel’s endpoint information (i.e., IPv4/v6 address and port), and the AOS kernel’s
ScID. Middleware endpoints relative to AOS are identified by an index field (analogous
to a port number) in the AOS contact record. AOS contact records are used by a
middleware component to set up a connection or to ship an AC to another agent
middleware. As part of connection setup, AOS internally verifies that its peer AOS kernel
has the private key corresponding to the ScID in the AOS contact record.

 370 G.J. van ‘t Noordende et al.

Internally, AOS uses a standard protocol (TLS/SSL) for authentication and
key-exchange, to set up an efficient, secure, encrypted channel to the peer AOS. The
middleware can specify a cryptographic cipher suite for the channel at connection setup
time, to influence the strength of the security protocols used by the internal connection.
Other than that, the middleware is unaware of the mechanisms used in AOS for secure
channel setup. Communication channels and agent shipments over the same pair of AOS
kernels, with the same security properties (i.e., cipher suites), are multiplexed over a
single AOS ‘base channel’. Re-using base channels to multiplex communication channels
and do agent shipment operations over, allows for amortising expensive initial secure
(SSL) connection setup times.

The advantage of ScIDs over, for example, X.509-based approaches, is that no PKI
infrastructure is required to bind keys to names, since ScIDs are coupled directly to keys:
a ScID can be used to authenticate an entity directly. How authentication takes place is
hidden inside the AOS kernel; the middleware simply specifies a ScID (in an AOS
contact record) as part of invoking an AOS operation, or obtains the ScID/contact record
of the peer AOS kernel as a result (e.g., when accepting a connection or when receiving
an agent). To authenticate a remote AOS kernel, a secure mechanism for passing an AOS
contact record suffices. Section 4.1 describes an example of how this can be achieved.
Any middleware authentication mechanism (e.g., using a specific PKI) can be layered on
top of the AOS abstractions, and systems that do not care about security may even ignore
the mechanism if they wish so.

A key property of the AOS authentication model is that the middleware does not have
to support a specific PKI or even public key cryptography; middleware processes simply
use AOS contact records, and AOS implements the required mechanism for
authentication and secure channel setup based on the information available in the contact
record. Although conceivably some kind of public key cryptography is required for
setting up an end-to-end authenticated channel on top of AOS (see Section 4), AOS does
not force the use a particular security model or cryptographic implementation upon the
middleware system that uses it.

3.2.3 Secure isolation and sharing of resources in AOS

One important benefit of sharing a stand-alone AOS kernel between processes is that it
allows for compartmentalisation of the middleware, and for flexible and efficient
exchanging and sharing of information stored in AOS between different middleware
processes. For example, in an agent middleware system that implements multiple agent
server processes for different agent programming languages, instead of moving the
content of an AC from a central middleware component to a separate agent server, the
only thing that needs to be passed is a credential that allows access to this AC through a
shared AOS kernel.

AOS provides a simple but effective authorisation credential called a cookie. A
cookie is a simple authentication token (basically, a hard-to-guess random bit string),
generated by AOS, which is known to the middleware and must be passed with each
invocation of an AOS method. Each cookie is associated with a role bitmap. The role
bitmap specifies which AOS methods may be invoked by the holder of the cookie. For
brevity, we refer to a cookie/role-bitmap combination as a role for the remainder of this
text. A role bitmap must be specified when a new cookie (role) is created by AOS and is

 Constructing secure mobile agent systems using the agent operating system 371

irrevocably connected to this cookie (role). Roles (cookies) can, if required, be passed
between processes.

After role creation, its role bitmap is stored in an internal AOS table, together with an
(initially empty) list of resources owned (created) by this role. Using roles, AOS can
verify whether a method invocation is allowed and whether the resource that is referred to
is owned by the invoking role. An AOS resource (e.g., AC or communication endpoint)
can only be owned by one role. Child roles (and their subroles and associated resources)
are owned and can be deleted by their creating role only. Upon role creation, AOS
verifies that the bitmap for the child role does not exceed the creator’s role bitmap
(permissions).

As an example of using roles, consider a central middleware process which receives
incoming agent ACs using AOS, and then dispatches these to an appropriate agent server.
The central middleware process creates a new role before it calls an AOS method to
receive an AC, as part of the procedure for agent transport (Section 4.4). This role’s
bitmap only allows AC related calls, and no communication related calls. After receiving
an AC, this AC is now owned by, and only accessible to, this role. After inspecting the
AC’s content and permitting the agent to enter, the central middleware process passes the
role’s cookie to an appropriate agent server process which can then retrieve the agent’s
code and data segments directly using AOS calls, and start the agent. An agent server can
only access the ACs associated with the roles that it has been given by the central
middleware process, and can only invoke operations related to these ACs.

The role model specifically allows construction of modular middleware that adheres
to the principle of least privilege. Compartmentalisation avoids that a single
compromised middleware component can exceed its privilege (as a role has only the
minimum required operations) and prevents compromise of resources owned by different
middleware components, such as ACs and communication channels. Different
approaches to compartmentalisation are conceivable; the role model is flexible enough to
accommodate different compartmentalisation strategies.

4 Building secure mobile agent middleware using AOS

AOS can be used in both open and closed systems; there is no specific usage model
embedded in AOS, nor does AOS depend on any central or shared services between all
applications. This is illustrated effectively by the fact that AOS is used in the design and
implementation of two conceptually very different mobile agent systems,
namely AgentScape (an ‘open’ system) and Mansion (a system that defines closed,
application-specific worlds (van ‘t Noordende et al., 2004)). In effect, AOS provides
secure agent transport and communication mechanisms, mediated through an effective
access control model that allows its usage in different settings. AOS’ minimality ensures
that different mobile agent systems can make use of AOS.

As an example of how AOS can be used in a secure way in a concrete system, we
describe how AOS is used to implement an Agent Transfer Protocol (ATP) in Mansion.
Mansion has a large emphasis on security, which partially influenced the design of AOS.
This can be observed from the Mansion ATP discussed in this section.

We start by describing how secure end-to-end communication can be established
when using the AOS kernel. Next, some relevant components of Mansion are introduced,

 372 G.J. van ‘t Noordende et al.

which are required for understanding the Mansion ATP. After that, the ATP is described
in detail. Combined, this section demonstrates how a secure agent middleware can be
constructed using AOS.

4.1 End-to-end authentication and secure communication

In many cases an end-to-end authentication protocol is required to obtain security at the
middleware layer. Mansion uses ScIDs for authenticating middleware processes. To
allow for middleware-level end-to-end authentication, the AOS contact record is
extended to contain a ScID corresponding to the public key of the middleware. The
resulting data structure is called a Middleware Contact Record (MCR). Another
middleware may choose a different model. For example, it can include a full (certified)
X.509 public key certificate (chain) in its version of the MCR.

Because AOS provides an encrypted transport mechanism, it becomes relatively
straightforward to implement a challenge-response based authentication protocol on top
of the AOS channel, based on public key cryptography. In such a protocol, a peer
middleware process can be sent a challenge using which it can prove that it has access to
the private key corresponding to its ScID or certificate. Next, both parties should
exchange (authenticated) messages between each other that contain the AOS endpoint
information of their own (trusted) AOS kernel. This information can then be compared to
information about the peer AOS endpoint and ScID, as verified by their own AOS kernel.
If this check does not take place, an impostor AOS kernel may sit between the AOS
kernels used by the middleware processes as a man-in-the-middle, which can decrypt and
read all information passed over the channel. After AOS endpoint information is
exchanged and verified as part of a middleware-level end-to-end authentication protocol,
both parties can trust the underlying AOS channel with regard to confidentiality
(secrecy), without requiring further cryptography at the middleware level.

4.2 Agent location service

Mansion uses a home-based approach for communication (van ‘t Noordende et al., 2004).
Each agent’s homebase consists of an agent location service (ALS), trusted by the agent’s
owner, which keeps track of the agent’s contact information. Each agent has a unique,
self-certifying AgentID, which contains the ScID of this agent’s ALS. Agents use
AgentIDs to communicate with other agents. The middleware looks up the agent’s
current contact address in the agent’s ALS (it can find the ALS in a directory service
using a special name containing the ALS ScID), in order to establish a communication
channel on the agent’s behalf.

In Mansion, as in most mobile agent systems, the middleware updates the ALS.
However, in most systems there is no way for the ALS to verify update requests, so it is
straightforward to change an agent’s contact information in illegitimate ways, for
example, to mount a denial of service attack against a particular agent.

In Mansion, we solved this problem by having the agent’s current middleware (the
initial middleware is known to the ALS) start an ALS update transaction, which has to be
committed by both the sending and the receiving middleware. This transaction will only
be completed after both middleware processes agreed to agent migration. The receiving
middleware verifies the incoming agent’s AC integrity and possibly some of its content

 Constructing secure mobile agent systems using the agent operating system 373

and commits only if this checks out. Either of the two parties may abort the ALS update
transaction at any time. The importance of this mechanism for this paper is that AOS is
used to implement agent integrity verification.

4.3 Audit trails

AOS provides basic integrity protection, in that it can verify whether an AC’s content
corresponds to the ToC with which it was shipped. However, AOS cannot directly
inspect what changes have been made to the AC prior to the previous AOS kernel (from
now on also referred to as a ‘hop’) that the agent ran on. Because AOS has no knowledge
of an agent’s specific content, AOS cannot make an informed decision on whether any
malicious modifications may have been made to the AC along the migration path that the
agent has followed.

Audit trails can be used to facilitate verification of integrity over a multihop itinerary.
The original idea of establishing audit trails for mobile agents was described in Karnik
and Tripathi (2001) for the Ajanta system. Here, append-only containers are used where
agents can store data in, and a specific audit trail mechanism is used using which
tampering with the append-only container can be detected. Compared to the Ajanta
system, AOS ACs are more flexible, as both persistent and transient files can be stored in
a single container. Also, the AOS AC is platform-independent whereas the Ajanta
solution is Java specific. The AOS ToC was specifically designed such that audit trail
construction and verification can be done very efficiently.

An audit trail is established by storing the ToC of an incoming AC – together with the
signature over this ToC created by the middleware that shipped it, and the public key of
the signer – in a new segment before the AC is finalised and shipped to the next host. By
retaining the ToCs of all hops that the agent visited, an audit trail is established using
which all changes made to the agent’s AC can be traced. Because of the ToC design, it is
straightforward to check for illegitimate changes to an AC using a binary comparison
algorithm that iterates over all ToCs in the audit trail from first to last.

The Mansion middleware verifies the audit trail at each hop before the AC is accepted
and the ALS update committed. This way, an AC that was tampered with can be refused
and is effectively contained on the middleware where the illegitimate change was made.
The ALS stores a log of the (ScIDs of) all hops that an agent visited, to allow for
detection of deletion of part of an audit trail (rollback) in case of cycles in the agent’s
itinerary – for example, when an agent visits a (malicious) host twice.

4.4 Overview of the Mansion ATP

This section gives a detailed overview of the Mansion ATP constructed on top of
AOS. The Mansion ATP combines the audit trail verification mechanism and the
transaction-based ALS update mechanism explained in the previous section. In particular,
agents are only migrated officially by means of an ALS update (where an agent’s contact
information in the ALS indicates the agent’s official whereabouts at a particular time) if
both the sending and receiving middleware agree on the agent’s integrity. Integrity
verification combines AOS-level AC integrity verification with middleware-level audit
trail verification. Note that the ATP may also be aborted for other reasons than AC
integrity violation – e.g., an incoming agent’s programming language may not be

 374 G.J. van ‘t Noordende et al.

supported by the receiving host, or the receiving host may have too few resources
available for running the agent.

The Mansion middleware (MMW) waits at an ATP endpoint for incoming requests.
The ATP endpoint is a regular communication endpoint, to which other MMW processes
can connect using an AOS call (Section 4.1). The middleware makes a preliminary
choice on whether it allows receipt of an AC, based on authentication of the peer process
and on information embedded in an initial ATP request message.

The ATP protocol is outlined in Figure 2. Below, we give a detailed outline of the
protocol including AC transfer and audit trail verification. Performance measurements of
most steps in this protocol are given in Section 5. The Mansion ATP, including an ALS
update protocol and audit trail verification protocol, consists of the following steps.

• When a decision is made (typically, by the agent) to migrate an agent, middleware A
suspends the agent and all its communication queues, finalises the agent’s AC and
initiates the ALS update transaction. As part of this, the middleware registers the
intended target middleware’s ScID in the ALS (1).

• Next, a connection is made to the ATP endpoint of middleware B; middleware A
provides information (e.g., programming language, resource requirements) about the
agent to the target middleware through an init message (2). Based on the init
message, the target middleware decides if it is willing to receive the agent.

• If the target middleware is willing to receive the agent, it calls a method on the AOS
kernel which creates an endpoint in AOS to which the agent can be sent (3). A
unique ‘transaction identifier’ (XID) is also created by AOS, which has to be used by
the sending middleware to ship the AC; this XID prevents that anyone can send an
arbitrary AC to an AOS kernel, and enforces that a middleware-level decision to
accept an agent precedes shipment/receipt of an AC. The XID, along with the AOS
ATP endpoint information, is sent to the client (4).

• The sending middleware signs the ToC of the finalised AC using its own key. The
ToC of the finalised AC is obtained by reading out segment 0 of the AC using an
AOS method. Middleware A sends the signature over the ToC and its public key to
middleware B for verification (5), while simultaneously instructing its AOS kernel to
ship the AC (6).

• Middleware B invokes a wait_ac call on AOS. This call returns an identifier for the
AC after the AC was received and verified correctly (7). An error will be returned if
there was any problem with the AC. After receiving a correct AC, its (verified) ToC
can be read out by middleware B by reading segment 0 of the agent’s AC.
Middleware B can now verify that the signature it received from middleware A in
Step 5 was made over this AC’s ToC.

• If all this checks out, the Mansion middleware searches the AC (using a naming
convention) for segments containing earlier ToCs. These segments are numbered
sequentially and the Mansion middleware can compare the signed ToCs iteratively
using the audit trail verification procedure outlined above.

• If audit trail verification checks out, and if there are no further problems with the
content of the incoming AC, the receiving middleware signs the ToC and sends the
signature back to the sending middleware as a receipt (8). Middleware A only

 Constructing secure mobile agent systems using the agent operating system 375

commits the migration after it received the receipt from Middleware B. Finally, both
parties commit (or possibly abort, in case of problems) the ALS update transaction
(9) to complete the migration.

• Before the agent is started, middleware B should store the ToC, key and signature
over the ToC created by middleware A, as persistent segments in the AC, to form the
next component of the agent’s audit trail.

The steps outlined above ensure that agent integrity is verified at all migration steps and
that each middleware that sends an agent to another middleware process signs the agent’s
AC using its private key. In addition, AC integrity verification, ToC signature
verification and storage of this information in the AC are required parts of the ALS
update protocol, in which both sending and receiving parties must commit the update.
This ensures that both middleware processes sign the AC’s ToC, that a verifiable receipt
can be kept, and that a valid ToC is stored in the agent’s audit trail.

Figure 2 Implementation of the Mansion hand-off protocol using AOS

AOS AOS

Middleware A

ALS

Middleware B

1

36 7

9 9

4 5

2

8

6

5 Performance of the Mansion ATP protocol using AOS

For a central component such as AOS, which is intended to be used for all interprocess
communication, mobile agent code/data management and migration operations and
performance is highly important. In an earlier paper (van ‘t Noordende et al., 2007b),
communication throughput and scalability have been reported for two implementations of
the AOS kernel, one in Java and one in C++. These measurements showed good
scalability results (van ‘t Noordende et al., 2007b). We do not repeat these measurements
here; instead, we focus on agent transport functionality and present measurements of
AOS while performing the ATP outlined in Section 4. We also present some
measurements of the latency incurred when communicating over AOS, which
complement the measurements described in van ‘t Noordende et al. (2007b).

The tests were run on a dedicated cluster containing 2.4 GHz dual-CPU/dual-core
AMD Opteron DP 280 compute nodes with 4 GB of memory, running a Linux 2.6.18
kernel on an XFS file system using a 1 G Ethernet network, each with a WD Caviar RE,

 376 G.J. van ‘t Noordende et al.

7200rpm hard-disk with 16 MB cache. The tests were run with a modified C++ AOS
kernel that included microsecond timers. The Mansion middleware is written in C and a
SunRPC dispatcher was used to invoke methods on AOS. All AOS connections were
configured to use 128 bits AES encryption with SHA-1 message authentication.

A test setup was created, consisting of three Mansion middleware processes, each
running on a separate node in the cluster. Agents were injected into the Mansion system,
transferred to the first middleware and subsequently transferred through two additional
middleware processes before being retrieved by its owner. Timing results were taken at
each of these nodes. The ALS was configured to use AOS for communication and ran on
a different machine than the middleware processes.

We ran tests of the ATP using ACs of three sizes: 500 KB, 1 MB and 5 MB,
respectively. Segments in the AC contained 5,120 bytes of random data, with the 500 KB
AC containing 100 segments, the 1 MB AC containing 200 segments and the 5 MB AC
containing 1,000 segments. The tests were run up to seven times for each AC size. The
measurements selected for this paper are median measurements or close to average. We
observed some outliers in the ATP tests. Inspection of the middleware log files showed
that in these cases, concurrent activity took place in the middleware – for example, a ToC
signature was received and verified in the middleware, while AOS was busy unzipping an
AC, corresponding to the concurrent Steps 5 and 6 in the Mansion ATP protocol outlined
in Subsection 4.4.

Since the Mansion middleware and AOS are concurrently running processes which
are multithreaded by design, some interference is inevitable for measurements of the
Mansion ATP protocol in a live system. However, since such outliers do not represent
pure AOS performance, we chose median values to avoid the effect of those outliers in
some cases.

5.1 Middleware to AOS RPC communication overhead

In van ‘t Noordende et al. (2007b), throughput measurements and scalability have been
measured, which show good scalability in that the total throughput remains constant
independent of the number of concurrent sends or AC shipments over a single
AOS-to-AOS base channel. However, even though scalability is important for a kernel
that is to be used by multiple processes concurrently, baseline performance in terms of
latency and throughput are probably at least as important for most system designers.

An important constraint with regard to AOS performance is the fact that RPC calls
are made to invoke AOS operations. For heavyweight operations, such as an AC transfer,
the added overhead is small compared to the overall cost of the (remote) operation and
can be mostly neglected. However, for tasks such as communication over an AOS
channel, the additional RPC overhead increases latency and decreases throughput. To
gain insight in this aspect, we measured the roundtrip time of a single invocation of a
local AOS ‘ping’ method. The measurements include the time it takes the (multithreaded)
SunRPC dispatcher to handle the request, verify the cookie and invoke the native ‘ping’
method, which returns a 32 bit integer. The average roundtrip time of this RPC call is 129
μsec. For comparison, a simple getpid() system call on the same machine takes 7 μsec on
average. Roughly speaking, about 122 μsec is added when using an AOS primitive,
compared to using an OS primitive (e.g., sockets) directly.

 Constructing secure mobile agent systems using the agent operating system 377

Clearly, because of RPC related overhead, AOS communication is not an optimal
solution when low-latency, high-bandwidth communication is required; instead,
communication over AOS should be considered primarily useful in cases where there are
limits on the number of usable TCP ports, e.g., when a machine resides behind a firewall.

5.2 Finalise costs

Prior to shipping an AC, the AC must be finalised to ensure that the AC’s ToC is
generated and that all segments are stored safely on disk. The latter is for crash-recovery
reasons; finalise acts as a checkpoint of the agent’s state. An AC is stored in a zip file
internally, to facilitate efficient transport over the network. Finalise constructs a ToC of
the AC and signs it, prior to shipping it to another AOS kernel. Finalise syncs the AC to
disk for crash recovery reasons.

Table 1 shows a microbenchmark of the finalise costs of agent containers of 500 KB,
1 MB and 5 MB containing random data. ToC checksumming and signing cause little
overhead, even for large ACs. Creating a zip file and sync’ing it to disk cause substantial
overhead; this can be explained because zipping requires that each segment is copied into
the zip file, possibly after compression. Zipping overhead is nearly linear to the total AC
size. Sync’ing the resulting zip file to disk is also rather expensive.
Table 1 Breakdown of finalise cost (in milliseconds) for ACs using the C++ kernel

 500 KB 1 MB 5 MB

Create ToC 8.4 9.1 14.9
Sign ToC 7.7 8.1 11.7
Zip AC 34.2 66.4 321.9
Sync AC 21.7 36.3 102.7
Total 87.6 127.5 450.2

Note: Results for the run with median total cost.

As mobile agents may migrate often during their lifetime, AC finalise and transfer cost
can increase the time for an agent to achieve its task considerably and may influence
scalability of the mobile agent middleware as a whole. A straightforward optimisation for
performance is to have AOS ship segment files to another AOS kernel directly, without
zipping the files first, in an FTP-like manner. Note that this could conceivably hurt
performance in cases where bandwidth is limited; in such cases, the compression offered
by zip files is an advantage. Another straightforward optimisation for performance is to
let go of the crash recovery assurance by means of the fsync system call.

5.3 Overhead of the Mansion ATP using AOS

In this section, we describe the performance of the Mansion ATP protocol outlined in
Subsection 4.4. In these tests, we measure the ATP overhead after the agent has migrated
one hop; thus, the receiving middleware must verify a two-level audit trail.

Table 2 shows the time it takes for the most important steps in the Mansion ATP. We
measure the total time it takes to ship an AC of 500 KB, 1 MB or 5 MB consisting of

 378 G.J. van ‘t Noordende et al.

segments of 5 K containing random data, as well as some of this operation’s component
costs.

The overall time for the ATP to complete for a 500 KB agent container is 171.9 msec.
For a 1 MB AC, the shipping time is 350.6 msec. and for a 5 MB AC this is 726.7 msec.
This time does not include the finalise time (taken from Table 1), but does include
channel setup, shipment of the zip file, receipt, extraction and verification of the AC and
the audit trail at the receiving side, verification of the returned ToC signature and
committing the ALS update.
Table 2 Performance of an AOS-based ATP with agent containers of different sizes

 Time (msec)
Protocol step

 500 K 1 MB 5 MB
S Finalise AC 87.6 127.5 450.2
S MMW sign ToC 7.7 8.1 9.0
R AOS extract AC + verify ToC 25.7 215.0 565.6
R MMW check ToC signature 0.8 1.4 2.5
R Audit trail verification 1.6 2.6 4.2
S AOS ship_ac completion 68.4 265.2 636.4
S MMW-level ATP completion 171.9 350.6 726.7

Note: S and R indicate AC sending, resp. receiving side.

Signing and verifying ToC signatures requires public key cryptography. As can be seen
from Table 2, the overhead of these operations, as well as for audit trail verification, is
negligible compared to the overall migration cost. The overall migration cost is
dominated by zip and unzip times. Unzip times are the major component of the AOS
extract AC and verify ToC measurement shown in Table 2. AOS-level AC extraction and
ToC verification times are not completely linear with respect to the AC size. The
complete AOS ship_ac call only returns if the receiving side has received, extracted
and verified the AC. Therefore, the AOS ship_ac completion measurements are
dominated by AC extraction cost. The overall MMW-level ATP completion time is
somewhat longer than the AOS ship_ac completion time which it includes. This is caused
by the additional interactions required at the middleware level, compared to the
AOS-internal interactions.

The AOS ToC design was optimised to make efficient (binary) comparison between
ToC entries of different ToCs in an audit trail possible. As can be observed from Table 2,
audit trail verification poses a negligible overhead compared to the overall overhead:
between 1.6 and 4.2 msec. for a 2-level audit trail, depending on AC size; indeed, this is
very efficient. Note that for ToC comparison, only access to ToC segments is required,
not to other segments. This is because correspondence of the segments in the AC with the
ToC entries of these segments has already been verified by AOS (wait_ac).

In all, Table 2 shows that the Mansion ATP can be implemented with little overhead
compared to the basic cost for finalising an AC and transferring it to another AOS kernel
over a secure AOS channel. The major cost component is zipping and unzipping the AC,
as well as sync’ing the AC to disk. ToC and audit trail verification mechanisms are very
efficient and cause negligible overhead, even though a 5M AC consists of a very large
number of segments.

 Constructing secure mobile agent systems using the agent operating system 379

6 Related work

AOS has a design which is not directly comparable to existing work. AOS is not an agent
middleware itself, but rather a middleware building block. In this section, we describe
related work that is partially related to AOS or the AOS requirements.

The FIPA (http://www.fipa.org) standard specification includes a series of documents
describing the functionality and operation of agent middleware. FIPA compliant agent
middleware can interoperate with each other, e.g., agents can exchange messages, interact
with, and reason about agents on other middleware. One of the most widely used FIPA
compliant agent middleware is JADE (Bellifemine et al., 2001). The latest middleware
design (version 3.5 as of today) is modular in design and many parties (universities and
companies) have contributed to JADE. The middleware is implemented in Java and
supports a Java API for agent development. It is a complete self-relying system, with
integrated location and yellow pages services. This is different from the AOS perspective
to agent middleware, where services are considered application specific and can be
arbitrary location or yellow pages services such as DNS or LDAP servers.

Ajanta (Karnik and Tripathi, 2001) is designed to include a number of security
primitives and architectural features to protect both the host and the agent from malicious
actions. It includes amongst others a similar concept as the agent container in AOS,
allowing for an audit trail mechanism resembling the one outlined in this paper and in
van ‘t Noordende et al. (2004). However, Ajanta is completely Java-based and is not
designed to incorporate or interact with other software components or services, while
AOS is platform (middleware) and language-independent.

The Tacoma (Johansen et al., 1995) project focuses on operating system support for
mobile agents. In that respect, it has many similar design goals as AOS by providing
low-level abstractions for, in particular, data storage and agent mobility. Although it also
provides a simple container abstraction, called a ‘briefcase’, only very simple protection
mechanisms were implemented. Tacoma supports multiple programming languages for
agents, in particular C and Tcl/Tk.

The MadKit agent platform architecture (Gutknecht and Ferber, 2000) aims to
provide a generic multi-agent platform. The architecture is based on a minimalist agent
kernel decoupled from specific agency models. Although there are similarities with the
design goals of the architectural model with AOS, the design and implementation are
quite different. The aim of MadKit is to allow a developer to implement its own agent
architectures. Basic services like message passing, migration, monitoring or management
are provided by platform agents. MadKit comes with a set of ‘containers’, realising
different execution environments for running an application. Alternatively, AOS aims to
provide a minimal, secure middleware layer for constructing mobile agent systems, and is
not directly used by agents.

7 Discussion

This paper discusses the design requirements, implementation and performance of the
AOS kernel. AOS is a portable middleware building block specifically aimed at
constructing mobile agent middleware systems. It can be used by different middleware
processes, possibly of different users, independently, where each such process may be

 380 G.J. van ‘t Noordende et al.

implemented in a different language. Programming language flexibility is facilitated by
the use of different RPC dispatchers, each providing a method invocation interface
suitable for a specific language. The AOS design allows for secure sharing of a single
AOS kernel between different middleware processes. A simple but effective access
control mechanism ensures that different middleware processes cannot access or
compromize AOS resources of other middleware processes.

AOS provides a minimal set of primitives that are common to mobile agent systems,
in particular for agent code and data storage, agent transport, and communication
between middleware components. AOS provides basic security services which can be
used by higher-level middleware layers to construct more elaborate security, such as
authentication mechanisms, secure agent transport, and mobile agent audit trails.

AOS offers a flexible basis for the construction of secure mobile agent systems and
for deploying multiple services or middleware processes at the same time on a single
AOS kernel. Support for secure middleware that internally consists of components
written in different languages is a novel contribution of our work. The access control
model based on roles allows for applying the principle of least privilege within a
modularly designed agent system and offers separation of resources in scenario’s where
AOS is shared between different mobile agent systems or middleware components.

Two implementations of AOS (in Java and C++) have been built, used, and tested for
interoperability. Scalability measurements of the AOS in an earlier paper showed that
AOS scales well with concurrent use. This paper shows that it is feasible to build a secure
mobile agent transfer protocol on top of the abstractions provided by AOS.
Measurements show that performance of the Mansion ATP is dominated by disk I/O
related costs, rather than by security related costs. Measurements show that Mansion’s
audit trail verification mechanism can be implemented on top of AOS very efficiently.
AOS is used in two different agent systems designed in our department, which illustrates
that AOS provides the right level of abstraction to construct diverse mobile agent systems
– even if these systems have rather different requirements or designs.

Acknowledgements

A number of colleagues have contributed ideas and helped to code parts of the AOS
kernel. The authors would like to acknowledge Etienne Posthumus, Patrick Verkaik,
Arno Bakker, David Mobach and Michel Oey. Maarten van Steen and Niek Wijngaards
are acknowledged for early contributions to this work. This research is supported by the
NLnet Foundation, http://www.nlnet.nl.

References
Baumann, J., Hohl, F., Strasser, M. and Rothermel, K. (1997) Mole – Concepts of a Mobile Agent

System, Technical Report, August, Universität Stuttgart.
Bellifemine, F., Poggi, A. and Rimassa, G. (2001) ‘Developing multi-agent systems with a

FIPA-compliant agent framework’, Software – Practice and Experience, Vol. 31, No. 2,
pp.103–128.

Gray, R.S., Kotz, D., Cybenko, G. and Rus, D. (1998) ‘D’agents: security in a multiple-language,
mobile-agent system’, Mobile Agents and Security, pp.154–187, LNCS 1419,
Springer-Verlag.

 Constructing secure mobile agent systems using the agent operating system 381

Gutknecht, O. and Ferber, J. (2000) ‘The MADKIT agent platform architecture’, in Proceedings of
the International Workshop on Infrastructure for Multi-Agent Systems, June, Montreal,
Canada, pp.48–55.

Johansen, D., van Renesse, R. and Schneider, F. (1995) ‘Operating systems support for mobile
agents’, in Proceedings of the 5th Workshop on Hot Topics in Operating Systems, May, Orcas
Island, WA, pp.42–45.

Karnik, N. and Tripathi, A. (2001) ‘Security in the Ajanta mobile agent system’, Software –
Practice and Experience, April, Vol. 31, No. 4, pp.301–329.

Mazières, D., Kaminsky, M., Kaashoek, M. and Witchel, E. (1999) ‘Separating key management
from file system security’, in Proceedings of the 17th ACM Symposium on Operating Systems
Principles, pp.124–139.

Milojicic, D., Douglis, F. and Wheeler, R. (Eds.) (1999) Mobility: Processes, Computers and
Agents, ACM Press.

Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill, G.A., Jeffers, R., Mitrovich, T.S.,
Pouliot, B.R. and Smith, D.S. (2000) ‘NOMADS: toward a strong and safe mobile agent
system’, in Proceedings of the Fourth International Conference on Autonomous Agents, June,
Barcelona, Spain, pp.163–164.

Tripathi, A.R., Ahmed, T. and Karnik, N.M. (2001) ‘Experiences and future challenges in mobile
agent programming’, Microprocessor and Microsystems, April, Vol. 25, No. 2, pp.121–129.

van ‘t Noordende, G., Balogh, A., Hofman, R., Brazier, F. and Tanenbaum, A. (2007a) ‘A secure
jailing system for confining untrusted applications’, International Conference on Security and
Cryptography (SECRYPT), 28–31 July, Barcelona, Spain.

van ‘t Noordende, G.J., Brazier, F.M. and Tanenbaum, A.S. (2004) ‘Security in a mobile agent
system’, in Proceedings of the First IEEE Symposium on Multi-Agent Security and
Survivability, August, Philadelphia, PA, pp.35–45.

van ‘t Noordende, G.J., Overeinder, B.J., Timmer, R.J., Brazier, F.M. and Tanenbaum, A.S.
(2007b) ‘A common base for building secure mobile agent middleware systems’, Proc. 2nd
Int’l Multiconference on Computer Science and Information Technology (IMCSIT), October,
Wisla, Poland, pp.13–25.

White, J.E. (1996) ‘Telescript technology: mobile agents’, White paper, General Magic.
Wijngaards, N.J.E., Overeinder, B.J., van Steen, M. and Brazier, F.M.T. (2002) ‘Supporting

internet-scale multi-agent systems’, Data and Knowledge Engineering, Vol. 41, Nos. 2–3,
pp.229–245.

Notes
1 The AOS specification can be requested from the authors.

