
Towards Purpose-Driven Virtual Machines

Naod Duga Jebessa, Guido van ’t Noordende, and Cees de Laat

University of Amsterdam
Science Park 904, 1098XH Amsterdam, The Netherlands

{jebessa,noordende,delaat}@uva.nl

Abstract. Virtual machines (VMs) are often generic though they are
meant to serve a specific purpose. The redundancy of generic VMs may
incur costs in security (due to bigger attack surface and a larger trusted
computing base) and performance (due to extra VM image size as well as
overheads in CPU and memory). We are working on techniques to build
minimal, application-specific and secure virtual machines from declara-
tive descriptions. An application running in a VM has dependencies on
other applications, libraries, kernel features and (virtual) hardware. We
model such a dependency as a graph. The VM is treated as an optimized
system built specifically to satisfy this dependency out of a set of interde-
pendent components such as packages and kernels from OS distributions.
Such distributions and installations based on them are inherently com-
plex networks that could benefit from a formal, rigorous treatment in
order to perform security and performance optimization. In this paper,
we describe our motivation and vision for this project, outline our ap-
proach, briefly report on current status, discuss challenges and research
problems that we intend to work on in the future.

1 Introduction

The virtual machine concept is one of the key enablers of clouds, and has found
applications in mobility, security, fault tolerance, grids, testing, and development.
VMs are often used to run a set of applications and as such can be thought of
as having a specific purpose. Nonetheless, VMs are commonly instantiated from
ready-made, generic images or are composed from off-the-shelf components like
applications, libraries, operating systems, and device drivers meant for physical
machines. For example, a VM image with a general purpose kernel with mil-
lions of lines of code (LOC) in its trusted compute base (TCB) can result in an
unnecessarily large attack surface. There are vulnerable libraries, applications,
protocol stacks and service configurations that could be omitted or otherwise

In: M. Heisel, E. Marchetti (eds.): Proceedings of ESSoS-DS 2013, Paris, France,
27-Feb-2013, published at http://ceur-ws.org Copyright c⃝by the paper’s authors.
Copying permitted only for private and academic purposes.



optimized without breaking the functionality of the application in question.
VMs are prone to misconfiguration by users who have to work with generic
images that are not optimized, either due to lack of expertise or simply be-
cause it is easier to just use an existing, general purpose image. This may incur
costs in terms of performance, due to extra VM image size, overheads in CPU
and memory usage, as well as security, due to bigger attack surface and a larger
TCB. Moreover, users are faced with VM sprawl as images are created, deployed,
changed, snapshotted, cloned and archived, making lifecycle management diffi-
cult. Many of these problems can be attributed to the black-box nature of VM
images.
We are advocating declarative descriptions of virtual machines so we can build an
optimal virtual machine on demand from existing components. Doing so should
allow us to do fine grained and automated optimization. Moreover, it would be
easier to reason over the security or other properties of the system using a se-
mantically rich model, than over an unstructured virtual machine image.

2 Approach

We use graph models for OS distributions and virtual machines built from them.
The purpose of the VM is declared using a domain-specific language (DSL [17,
24]). The declarative description is then used as an input to a pipeline used to
build an optimized VM. The problem is partitioned into two major subproblems.
The first subproblem, corresponding to the two stages in our four stage pipeline
(see D and C in figure 1), focuses on descriptions and as such involves language
and semantics related issues as well as ways to capture user/application require-
ments. The second subproblem is about translating the descriptions to concrete
systems that meet constraints derived from the second stage. For brevity, we have
shown the outputs of each stage while arrows represent intermediate blocks.

Fig. 1. Outputs D, C, M & T after each of the 4 stages in the VM building pipeline



2.1 Operating Systems as Complex Networks

It is possible to model an operating system distribution as a graph of interdepen-
dent components. An operating system OSi can have v versions, each comprising
a set P of packages with a dependency graph Gp and a kernel whose features [4,
7] can be represented as a dependency graph Gk. It is worth noting that there is
an implicit dependency between Gp and Gk as applications and libraries expect
a kernel to interact with and because many distributions treat the kernel itself
as a package.
Because we can annotate the graph model with external information about, say,
security-related statistics on packages, we will be able to employ security-aware
constraints in our optimization pipeline. This pipeline is part of a toolchain for
building virtual machines that we are developing.
An ongoing work is to use ideas from network science and complexity [1, 2] to
understand the structure and dynamics of OS distributions and installations [5].
As an example, we created an annotated semantic graph of Debian Squeeze

that comes with a Linux 2.6 kernel for i386. This graph has approximately 40
thousand nodes and 170 thousand edges. Figure 2 shows a visualization of the
graph. One can imagine how challenging it is to manipulate this model and gain
insight from it. However, we simplify the problem by focusing on the dependency
graph of a small set of applications on a specific OS, as shown in figures 3 and
4.

Fig. 2. An OS as a complex network

Fig. 3.Minimized network for a specific ap-
plication. The center node is libc, the C
runtime library for Unix-like systems.



2.2 Declarative Descriptions and Constraints

The VM is declaratively described in a domain-specific language (DSL). The
description specifies minimal requirements from the VM such as set of packages,
kernel features and system configurations for software, (virtual) hardware, net-
works, and so on. This description is then analyzed to fill in details and create a
constraint for optimization, as shown in figure 1. The DSL should be expressive
enough and should allow explicit declarations through conjunction, negation,
and disjunction. For example, a description may have a list of requirements that
must be satisfied (conjunction), unneeded functionality (negation), and alterna-
tives for a certain feature (disjunction). Implicit requirements in the VM will be
incorporated as default constraints upon analysis. For example, if the declarative
description does not state what version of an OS to use, a default version may
be selected. Declarative descriptions and constraints have several advantages.
They can be versioned to allow rollback; can be based on existing templates;
and can be reasoned about (say, to map a declaration/constraint to an already
built VM).

2.3 Optimization and Reasoning About VM Security

We look at the VM as the minimal composition from a set of interdependent
components in package dependency graphs Gpi and kernel feature graphs Gkj

that satisfies the constraint set forth by the declarative description.
Dependency resolution is an NP-complete problem [3]. The fact that we add con-
straints might lead to declarations with constraints that are not satisfied. From
the package dependency graph point of view (see figure 4 for a specific applica-
tion2), the problem is finding an optimal installation that satisfies constraints
pertaining to packages [8]. For the kernel, this translates to (de)selecting features
based on constraints on the kernel, specifically device drivers, file systems and
protocol stacks [4, 7].
Let us consider the case where there is a security advisory for a network ex-
ploitable vulnerability in package X version a.b.c for a specific OS. A query to
the declarative description and the blueprint of the VM would show if we have
that specific version in the virtual machine. This could be automated and can
be an integral part of a simplified security lifecycle management pipeline.
A practical problem with this approach is that security advisories (like CVE/DSA3)
are not semantically rich enough. We see promising research with practical sig-
nificance in employing semantic technologies to describe, consume and process
security-related information.

2.4 Building Virtual Machines

Having installed an optimized package set on top of a possibly optimized kernel,
a VM image can be configured with cryptographic keys, users, passwords and the

2 http://fsl.fmrib.ox.ac.uk
3 http://cve.mitre.org/, http://www.debian.org/security/



Fig. 4. Partial dependency graph for a specific application

like along with extra dependencies like memory, processor, storage and network
settings to a specific target hypervisor.
We are building a proof-of-concept setup to validate the ideas presented so far.
There are at least four engineering challenges. First, there are quite a few hy-
pervisors to target, each with a somewhat different view of a guest VM. To this
end, we plan to have a modular and extensible VM building pipeline. The de-
sign of the hypervisor might also constrain how we optimize the VM and it is
worth considering hypervisor-VM optimization in this regard, e.g. with respect
to drivers.
Second, there are a range of VM image formats and containers to target. The
qcow2 format used by KVM/QEMU, for instance, is quite different from formats
like Xen raw disk, AMI (Amazon, with separate kernel and ramdisk), Microsoft
Hyper-V’s vhd, VirtualBox vdi, and vmdk (VMware). However, a modular design
should allow us to build a VM and target it to different formats. This is possible
because most formats are more or less indifferent to how we optimize the internal
subsystems of the VM and because there are readily available conversion tools.
Third, there are a plethora of operating systems that we can build virtual ma-
chines from. Modeling each OS as an annotated dependency graph is a difficult
endeavor. Hence, we plan to work on a set of representative OS distributions.
Even though our approach is ideal for the Unix philosophy and package-based
source/binary OS distributions, it should be possible to extend the idea to other
platforms, as the formalism we are developing is fairly generic.
Last but not least, there is the issue of efficient VM building. One might con-
sider having a ready made ’base’ VM setup for commonly used virtual machines
and configure a candidate based on the constraints set forth by the declarative
description. This approach may be useful when the time to build and deploy is



of significant importance, as building a custom kernel takes several minutes and
package installation and configuration takes significant time as well.

3 Research Challenges and Future Work

1. How do we manage complexity and heterogeneity? : One challenge is coming
up with a fairly generic abstraction that can be used to model a VM based on
any one of a range of OS distributions; built for one or more hypervisors and
processor architectures; and can be targeted at one or more cloud stacks. We
believe that dependency graphs and complex networks are a viable founda-
tion to start with, together with an information model for each component
from which the VM is composed from. In such an approach, we treat the VM
as a layered stack of dependencies in hardware, hypervisor, kernel features,
libraries, applications and configurations. Such a graph model allows us to
separate theoretical problems from implementation issues. The model would
benefit from existing research in complex networks [1], graph theory [2, 12,
21], boolean satisfiability and dependency resolution [3, 19, 13, 14]. We could
leverage existing tools and demonstrate our ideas through a proof of con-
cept pipeline instead of a complete implementation that supports all major
operating systems and hypervisors.

2. How do we describe the specific purpose of a VM? : People often use natural
languages to describe what a specific machine is for, be it physical or vir-
tual, even though the machine is, in principle, general-purpose. The design
of a declarative language for VM description calls for a tradeoff between
simplicity and expressiveness. The first challenge arises from the fact that
a user cannot be expected to explicitly declare everything. So the language
[20, 24] should have constructs to support implicit declarations. Second, the
expressive power of the language dictates much of what is done after pro-
cessing a description. For example, a very fine-grained description (e.g. with
conjunctive normal form constraints) may be difficult to satisfy, due to a
limited search space and making the optimization problem at hand difficult
(as in too many variables and constraints) and time-consuming (translating
the solution to a concrete VM). A coarse-grained description, on the other
hand, may introduce indeterminism, sub-optimal or too-optimized solutions,
and an increased search space.

3. How do we fill the semantic gap in security? : To our surprise, much of the
available security-related information (e.g. from CVE or specific vendors)
is not structured enough to be used by automated tools. In our particular
case, for example, it is not easy to gather vulnerability information so as
to measure or evaluate the security of a VM instance due the ambiguity,
incompleteness and a non-standard vocabulary, to mention a few, of security
advisories. Along with our work in measuring security of a VM and on attack
surface evaluation metrics, we plan to suggest a semantically rich, machine-
readable format to describe vulnerabilities and develop a logic formalism for
attack scenarios, specially for use by OS distributions like Debian.



4. What is this all for? : In cloud parlance, our idea is conceptually equivalent
to offering a PaaS on demand, targeted at an existing IaaS. A good exam-
ple might be creating a VM cluster for a DNA processing application that
expects a certain runtime environment, including an OS installation and all
required dependencies. Hence, our project essentially maps high-level appli-
cation requirements to low-level infrastructure details. Moreover, some appli-
cation scenarios are security and privacy sensitive. Hence, we are advocating
a disciplined way of building VMs with the hypothesis that a pipeline that
translates declarative descriptions to concrete VMs would allow for ’white-
box machines’ (whose internal manifest is clearly known), hence allowing us
to reason about certain attributes of such a VM like its trusted compute
base (TCB) size, the size of its attack surface, the possibility of exploitation
given an attack scenario, or trustworthiness in general. While security is the
main goal of our work, the approach could have advantages in smaller VMs
that could perform well [18] and are easy to maintain, allowing users and
frontend tools to automatically build virtual machines. As future work, we
plan to build demos and explore use cases and usability as the feedback from
such endeavors will allow us to refine our approach to the problem.

5. Validation and Evaluation Techniques: We are working on the assumption
that optimized, purpose-driven VMs are likely to be more secure and could
possibly perform better. In addition, our approach of employing a declarative
VM description language might improve usability, flexibility and maintain-
ability. All the above hypotheses need to be tested. The security of a VM
is not straightforward to quantify due to the absence of an evaluation met-
ric. However, having the knowledge of the VM internals should allow us
to propose novel metrics that we can use to compare the security of opti-
mized VMs with their generic counterparts. Performance of the VM building
pipeline and the built VMs, on the other hand, can readily be evaluated in
terms of time taken to build a VM (compared to manual building and off-
the-shelf deployment of an existing VM image); the CPU and memory usage
while the VM is running; and VM image size (which is important during
migration, for example). Usability, flexibility and maintainability could be
evaluated through use cases that make use of our tools, albeit subjectively.

4 Related Work

There are quite a few projects that aim at building VMs [11], image manip-
ulation4, configuration tools & APIs5, and interaction with hypervisors6, the
majority of which are open source. We are aware of at least half a dozen so-
lutions focusing on VM building, with varying maturity and OS support. Our
work differs in two major ways and is, in essence, orthogonal to most. First,
building a VM is only part of what we do and as such it can be considered as

4 http://libguestfs.org/
5 http://augeas.net/, http://cfengine.com/
6 http://libvirt.org/



an implementation issue. Second, we are introducing a purpose-driven (declar-
ative) VM-building paradigm wherein we do fine-grained optimization with im-
plications in security, performance and flexibility, as opposed to straightforward
installation as is often done by existing solutions7.
In the domain of software engineering, researchers have studied automatic gen-
eration [15, 16, 23], predictable assembly [6], variability and feature models [4, 7,
9] as applied to OS kernels. Few authors have studied operating system distribu-
tions as complex networks [1] and we believe there is more to be done, specially
in the context of security, OS complexity and virtual machines. The authors in
[3, 5] have done detailed studies on formalisms and tools to manage complexity
of package-based OS distributions showing that they exhibit the small world
property [2] of many networks. We hope to work towards a graph theoretic at-
tack surface metric [10] that takes into consideration semantic metadata about
components and the composition thereof, of a virtual machine. This would allow
us to evaluate the security advantages of minimal and application-specific VMs.
Applications of such evaluations can be found in, for example, data storage sys-
tems for distributed applications that have stringent security requirements [22].

5 Conclusion

For many users, a virtual machine is a black box that is difficult to reason about,
trust, configure and maintain. While this is most certainly true for inexperienced
users, expert users also find themselves working with pre-configured or generic
VM images, which is anything but transparent. Furthermore, automated infras-
tructure provisioning tools are increasingly using virtual machine technology to
serve computational needs by deploying VMs on demand, often from pre-built
images. We believe that there is a missing link between the purpose of a VM
on one hand and the way a VM is built on the other. We need a generic and
disciplined process to build our virtual machines.
Our work fits in the wider problem of security and privacy in clouds. One aspect
is having trustworthy VM installations that can be (remotely) attested. The user
might want to just declare and expect to get a fairly secure VM while the cloud
provider might expect to have some guarantee that the VM is ’safe’ to deploy.
Depending on the use case, the declarative description and intermediate steps in
our pipeline could be used or extended to incorporate mutual trust, where both
parties can verify relevant properties of the virtual machine. Another aspect is
the issue of privacy in clouds which we believe can benefit from a trustworthy
execution environment. If a VM can be attacked and owned, it will be a breach
of the necessary condition of confidentiality of the data it is supposed to process
(as part of its purpose), secret keys it has stored, etc.
In this paper, we have described the idea of a purpose-driven virtual machine.
Our motivation is the observation that a VM is often meant to serve a specific
purpose and the fact that generic VMs have redundant components that may be

7 http://wiki.debian.org/VMBuilder, http://virt-manager.org/



omitted, giving advantages in security and performance. Using declarative de-
scriptions of application requirements, we are able to generate virtual machines
on demand out of component ecosystems (i.e. OS distributions) modeled as com-
plex networks. We have discussed our approach and outlined some theoretical
and practical problems that we intend to work on in the future.

Acknowledgment: This research is supported by the Dutch national research
program COMMIT (http://www.commit-nl.nl). We would like to thank the anony-
mous reviewers whose comments helped improve the paper.

References

1. M. Newman, A-L. Barabasi, and D.J. Watts. 2006. The Structure and Dynamics of
Networks: (Princeton Studies in Complexity). Princeton University Press, Prince-
ton, NJ, USA.

2. J. Kleinberg. 2000. The small-world phenomenon: an algorithm perspective. In Pro-
ceedings of the thirty-second annual ACM symposium on Theory of computing
(STOC ’00). ACM, New York, NY, USA, 163-170.

3. F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak, X. Leroy, and R.
Treinen. 2006. Managing the Complexity of Large Free and Open Source Package-
Based Software Distributions. In Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE ’06). IEEE Computer Society,
Washington, DC, USA.

4. T. Berger, S. She, R. Lotufo, A. Wa̧sowski, and K. Czarnecki. 2010. Variability
modeling in the real: a perspective from the operating systems domain. In Proceed-
ings of the IEEE/ACM international conference on Automated software engineering
(ASE ’10). ACM, New York, NY, USA, 73-82.

5. P. Abate, R. di Cosmo, J. Boender, and S. Zacchiroli. 2009. Strong dependencies
between software components. In Proceedings of the 2009 3rd International Sym-
posium on Empirical Software Engineering and Measurement (ESEM ’09). IEEE
Computer Society, Washington, DC, USA, 89-99.

6. S.A. Hissam, G.A. Moreno, J.A. Stafford, and K.C. Wallnau. 2002. Packaging Pre-
dictable Assembly. In Proceedings of the IFIP/ACM Working Conference on Com-
ponent Deployment (CD ’02), J.M. Bishop (Ed.). Springer-Verlag, London, UK,
UK, 108-124.

7. R. di Cosmo and S. Zacchiroli. 2010. Feature diagrams as package dependencies. In
Proceedings of the 14th international conference on Software product lines: going
beyond (SPLC’10), J. Bosch and J. Lee (Eds.). Springer-Verlag, Berlin, Heidelberg,
476-480.

8. P. Abate, R. di Cosmo, R. Treinen, and S. Zacchiroli. 2013. A modular package
manager architecture. Inf. Softw. Technol. 55, 2 (February 2013), 459-474.

9. L. Passos, K. Czarnecki, and A. Wa̧sowski. 2012. Towards a catalog of variability
evolution patterns: the Linux kernel case. In Proceedings of the 4th International
Workshop on Feature-Oriented Software Development (FOSD ’12), Ina Schaefer and
Thomas Thm (Eds.). ACM, New York, NY, USA, 62-69.

10. P.K. Manadhata and J.M. Wing. 2011. An Attack Surface Metric. IEEE Trans.
Softw. Eng. 37, 3 (May 2011), 371-386.



11. I. Krsul, A. Ganguly, J. Zhang, J.A. B. Fortes, and R.J. Figueiredo. 2004. VM-
Plants: Providing and Managing Virtual Machine Execution Environments for Grid
Computing. In Proceedings of the 2004 ACM/IEEE conference on Supercomputing
(SC ’04). IEEE Computer Society, Washington, DC, USA, 7-.

12. M. Newman. 2010. Networks: An Introduction. Oxford University Press, Inc., New
York, NY, USA.

13. G. Jenson, J. Dietrich, and H.W. Guesgen. 2010. An empirical study of the compo-
nent dependency resolution search space. In Proceedings of the 13th international
conference on Component-Based Software Engineering (CBSE’10), L. Grunske, R.
Reussner, and F. Plasil (Eds.). Springer-Verlag, Berlin, Heidelberg, 182-199.

14. L. Bordeaux, Y. Hamadi, and L. Zhang. 2006. Propositional Satisfiability and
Constraint Programming: A comparative survey. ACM Comput. Surv. 38, 4, Article
12 (December 2006).

15. L. Guthier, S. Yoo, and A. Jerraya. 2001. Automatic generation and targeting of
application specific operating systems and embedded systems software. In Proceed-
ings of the conference on Design, automation and test in Europe (DATE ’01), W.
Nebel and A. Jerraya (Eds.). IEEE Press, Piscataway, NJ, USA, 679-685.

16. A. Sarmento, L. Kriaa, A. Grasset, M-W. Youssef, A. Bouchhima, F. Rousseau, W.
Cesario, and A.A. Jerraya. 2005. Service dependency graph: an efficient model for
hardware/software interfaces modeling and generation for SoC design. In Proceed-
ings of the 3rd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis (CODES+ISSS ’05). ACM, New York, NY, USA,
261-266.

17. A. van Deursen, P. Klint, and J. Visser. 2000. Domain-specific languages: an an-
notated bibliography. SIGPLAN Not. 35, 6 (June 2000), 26-36.

18. N.D. Jebessa, G. van ’t Noordende, C. de Laat. 2012. Optimizing Security for Vir-
tual Machine Applications. In HPDC 2012. The 21st International ACM Symposium
on High-Performance Parallel and Distributed Computing (Poster Abstract). (July
2012)

19. T. Zimmermann, and N. Nagappan. 2007. Predicting subsystem failures using de-
pendency graph complexities. In Software Reliability 2007. ISSRE’07. The 18th
IEEE International Symposium on, pp. 227-236. IEEE, 2007.

20. R.J. Stainton. 1996. Philosophical perspectives on language. Peterborough, Ont.,
Broadview Press.

21. S.E. Schaeffer. 2007. Survey: Graph clustering. Comput. Sci. Rev. 1, 1 (August
2007), 27-64.

22. G.J. van ’t Noordende, S.D. Olabarriaga, M.R. Koot, and C.T.A.M. de Laat. 2008.
A Trusted Data Storage Infrastructure for Grid-Based Medical Applications. In Pro-
ceedings of the 2008 Eighth IEEE International Symposium on Cluster Computing
and the Grid (CCGRID ’08). IEEE Computer Society, Washington, DC, USA, 627-
632.

23. K. Czarnecki and U.W. Eisenecker. 2000. Generative Programming: Methods,
Tools, and Applications. ACM Press/Addison-Wesley Publ. Co., New York, NY,
USA.

24. M. Mernik, J. Heering, and A.M. Sloane. 2005. When and how to develop domain-
specific languages. ACM Comput. Surv. 37, 4 (December 2005), 316-344.


