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Abstract

In this paper is presented a modi�ed version of gsiftp
protocol which takes into account the client's host prop-
erties and enforces encryption on data connection. An
implementation based on a modi�ed globus toolkit is de-
scribed and several types of throughput measurements are
discussed. This document is intended as a multiple ve-
hicle: software requirements document, software speci�-
cation/design document, throughput measurements doc-
ument.
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Introduction

Several authors describe di�erent security models for distributed storage
within grid, which is common in the case of medical data [8].

Using several services, like CryptoSRM-a storage manager, Hydra Key
Store, [8] describes a security protocol that enables safe data and meta-
data storage. Paper [25] is concerned with scalability and fault tolerance of
distributed �lesystem and acknowledges the need for a security model in this
environment. Paper [26] proposes the use of a XACML access scheme based
on user properties using multiple services for access mapping.

Examining the legal requirements for medical data processing, [18] de-
scribes a security architecture based on a trusted storage broker that would
allow, through speci�c protocol changes, to assign responsibility on data
processing. We will discuss here the data transport part involved in [18].

GridFtp server/client pair is one of them and it extends the FTP proto-
col, in several steps, both with e�ciency-oriented extensions parallel-striping
mode transfer (relieving the load on the server) [4], and security-oriented
extensions, mainly for control connection [17]. Another data-transport tech-
nique is the global access to secondary storage - type of data provider
which, for instance, implements the HTTP family of protocols.

We chose Globus toolkit to implement the changes. In the following
we will concern ourselves with the security requirements, changes in gridftp
protocol, client and server design of software changes in the toolkit, and
describe how the implementation ful�lls the requirements. We then focus on
performance measurements and describe in the end the �nal �gures. Several
other considerations become appearent from this work, and we sketch them,
brie�y.
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Requirements

The paper [18] describes several requirements for securing data access and
usage. They span from binding job to proxy certi�cate and host certi�cate
to Access Control List - based access, but not all of them have the same
impact (or type of impact) on performance.

We will list them explicitly here and point out which ones we intend to
satisfy and which not:

1. secure binding between jobs and proxy certi�cate [we will not change
the job submission procedure in any way]

2. data owner enforced ACL/Host properties of computing element [we
partially touch this, it will have a limited impact ]

3. microcontracts

(a) for host-computing element: Host Property List/Remote Host
Property List comparison and microcontracting [not adressed]

(b) for all authorization decisions [some adressed here]

(c) for accessing data [adressed here]

4. non-repudiation of transaction records [discussed here]

Requirement (2) is pointing to the host accessing the data has to provide
a signed contract pertaining to the execution environment. Several other
dynamical parameters of the job execution might be on interest (like memory
constraints or time constraints), but we will limit ourselves to an unspeci�ed

contract for execution environment.
Requirement (3) is addressing the issue of data user being responsible for

data access and is be accomplished in two co-operating ways: by protocol
modi�cations and a supplementary logging service. [18] describes how this
is solved by transitivity of trust from TSRB.

Requirement (4) is a strong one, since any sequential collection of access
records can probably be repudiated unless the data user signs for the whole
session. We will ful�ll here only a minimal part of this requirement, since the
main purpose of this text is to assess performance impact of added security.
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Functional and Design Speci�cations

 C :Client  SC :ServerControl 

 connect() 

 

 Mutual Authentication 

 AUTH,ADAT 

 

 335 ADAT:FgMAAFECA 

 

 235 GSSAPI Authentication succes 

 

ENC − prefixed 

 messages

631/632 − messagesUSER /PASS login

 Features List 

 211−Extensions supported:... 

 

 SITE CLIENTINFO <client description and version> 

 

 250 OK. 

 

 HPL exchange 

 HPL <hpl content> 

 

 228−HPL Ok. 

 

 Data Trans. Params. 

 DCAU A, PBSZ 1048576, PROT P,PASV 

 

 200 Params ACK, Passive Mode (host,port) 

 

 Data Transfer 

 RETR <file path> 

 

<<create>>

 
 SD:ServerData 

 _                  connect() 

 
SSL v3 handshake

 150 Begining transfer. 

 

 <Data chunk 0> 

 

 <Data chunk N> 

 

 226 Transfer Complete. 

 

<<destroy>>

 

 QUIT 

 

 221 Goodbye. 

 

Figure 1: Modi�ed gsiftp sequence diagram in a happy-case scenario. A
particular �ow of the original gsiftp behavior can be still observed if we
ignore the HPL part.
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GridFTP is based on several RFCs and extensions and provides data transfer
service within grid [2, 3, 4, 5]. We will try to keep backward compatibility,
as the common implementations of gridftp server do.

As part of the protocol change, we pre-pend an s from �secure� to URL
string, transforming it into �sgsiftp://fqhn:port� syntax, which will allow
client-side speci�cation of the protocol.

The initial part of FTP protocol requires the client to authenticate (be
it anonymous) to the server [2] through AUTH/ADAT message exchange.
Providing additional information about the execution environment allows the
data owner to assess the safety of data usage context, and thus, to reject the
request on insecure machines. This requires an additional type of message,
and has additional dependencies, in feature listing and access control. We
call this message (as in [18]) HPL, standing for host property list. It adds
an additional complementary layer of access control to data handling, thus
ful�lling requirement (2).

As speci�ed by [5], over the control channel, a key-exchange phase and
mutual authentication takes place, leading to a sequence of messages ex-
changed, encapsulated as FTP Pre�x+/SSL/Base64/TCP/IP, according to
the standard(s), SSL.

The speci�cations above satisfy requirements (2), due to the HPL mes-
sage, (3) due to mutual authentication during TLS handshake and partially
(4) - see Figure 1

The sequence beginning with AUTH GSSAPI and ending with the reply
�235 GSSAPI Auth success� outlines the credential exchange and mutual
authentication phase and establishes a security association over which the
following control messages are to be exchanged.

Depending on the authentication mode, a user-password authentication
takes place next, which can be replaced by a grid identity.

Feature enumeration takes place at client request, listing among sup-
ported features HPL exchange.

As soon as connection parameters are �negotiated� and HPL accepted,
an encrypted SSL/TCP data connection is established, over which data is
transferred.

Deviation from this happy case scenario in the �HPL-exchange� box in
Figure 1, produces 500-pre�xed error message(s), which lets peer know the
feature(s) are not supported. This satis�es an implicit requirement of back-
ward compatibility. It could also control access to the �lesystem based on
the HPL.

Logging: On the control connection, logger service records the encrypted
and plaintext of the messages exchanged. Besides the fact that message
signatures are veri�ed upon receiving, transcribing the transactions allows
them to be veri�ed later.
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Base 64 encoding is used for encrypted messages. For the data connec-
tion, a similar mechanism is employed, except that only a HMAC of the data
bu�er will be stored, again in base64 encoded form.

Authentication: TLS handshake takes place with certi�cate request, so
that both parties are authenticated and the identities of the parties are
veri�ed. Once the security association is established, the communication
takes place over the negotiated encrypted channel. Client certi�cate in e�ect
is the grid proxy certi�cate.

As far as the encrypted channel is authenticated, transcribing the mes-
sages will provide grounds for non-repudiation.

Control channel: On the control channel, the exchange of messages
follows RFC 2228, which speci�es AUTH / ADAT pair for credential ex-
change, with support for mutual authentication.

Data channel: On the data channel a TLS handshake takes place per
data bu�er sent, which makes each transaction signed and accounted for.

Auditing: No auditing of transactions records is implemented so far, we
will sketch a possible approach. A clearer picture on how strong the re-
pudiation/secrecy requirements are ful�lled can be obtained by examining
potential attacher/defender scenarios and their strategies both for system
security and for repudiation. We start by noticing that neither the attacker,
nor the defender of a secure (private) service have in�nite means of action,
so their respective action space is limited [26].

Whenever possible, the whole authentication scheme together with log-
ging and microcontracting might be examined within a game theory context,
and if there is a equilibrium solution, the whole strategy leading there can
be regarded as a defense strategy. Such analysis, together with stability
analysis might underline the relevant events for the desired purpose - be
it intrusion detection or non-repudiation- and allow an optimal logging ser-
vice/log �lter to be designed, focused on relevant events. Of course, di�erent
type of actions (claims) come into play for (non)repudiation case from server
attacks case.

Applications Description

Client operations rely on a callback loop synchronized on a condition variable
signaled inside each callback function. Some callback functions are protocol
statefull and advance the FSM to ful�lling the request state(s). This struc-
ture allows abstracting the details of the protocol through a couple of high
level functions (GET, PUT ... ).

6



Figure 2: Client block diagram. IO operations are ful�lled by XIO abstrac-
tion layer. Client control library abstracts the protocol details.

Server structure is a little di�erent, as it features two separate program-
ming language �namespaces�, one of the �FTP server�, dealing with initial
complicated phases of authentication, while the second, called �GFS� exposes
a command-callback API, �lesystem-like interface to the developer, and is
only functional after the initial handshake phase ends successfully. The two
namespaces have in common the connection and session handles with prop-
erties set in the �rst part of the protocol. As process model, server spawns
a new server-process for each socket-connection accepted, all requests being
satis�ed within the boundaries of that process. As a structure, server tends
to be simpler than the client, taking into account the FTP protocol state
machine library.

HPL exchange On the client side, a trimmed version of the control con-
nection state machine looks like in �gure 2.

On the server side, two separate namespeces, namely the �server control�
and �gfs� are present, handing over informations through connection/session
handles.

As soon as client initiates a request, the GridFTP control library start
advancing through the state machine, moving through authentication, data
parameter setting and, �nally data transfer.
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START

CONNECT

GRIDFTP_GET_PUT

AUTHENTICATE

CONNECT_DONE

EXIT

GLOBUS_ERROR

SITE_FAULT

AUTHENTICATE_DONEHPL_HANDSHAKE

AUTHENTICATE_DONE AUTHENTICATE_DONE_DEBUG

EV_REDO

AUTHENTICATE_FAULT

SITE_HELP

EV_REDO

SITE_FAULT_DONE EV_HANDLE_RESTART_ABORT_FAILURE

CONNECTION

SITE_FAULT_ERR

HPL_ERROR

HPL_DONE

SETUP_SITE_HELP_DONE

FEAT

SITE_HELP_DONE

CLIENTINFO

FEAT_DONE

NEED_COMPLETE

CLIENTINFO_DONE EV_REDONO_CLIENTINFO

TYPE

OP_Q_NONE

AUTHZ_ASSERT

NO_TYPE

Figure 3: Client control connection state machine with changes. HPL -
related changes are depicted in �red�

Microcontracting Since SSLv3 session in itself is to an extent non-repudiable,
it is just a matter of transcribing enough data to have an implementation of
microcontracts, and data is available in gss read/write callbacks for messages
and through the get interface of GSI for keys.

We call the non-repudiable records of data transfers and actions micro-
contracts. Micro-contracts on all exchanged messages are de�ned as:

(message, encrypted signedmessage) -tuple for control connection mes-
sages and

(data checksum, signature) - tuple for data connection,
where we call message the plaintext ftp control message (stored for con-

venience) and data checksum the cryptographic hash of the data portion of
the message, which the receiver veri�es when receiving.

The data connection micro-contracting tuples are base64 encoded too,
leading to a plaintext log. This part is not implemented yet.

Since little or no additional operations are added for micro-contracting,
the overhead produced is probably indiscernible on the �nal performance of
the system.

Logging Logging is done by hooking a logging API within the context
where both the encrypted and plaintext components of the exchanged mes-
sages are present. gss_wrap and gss_unwrap routines and their callers
are the ones that provide the place.

globus_gss_assist_init_sec_context and globus_gss_assist_
accept_sec_context provide the place where key data is accessible.
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GSSAPI_READ

READING_AUTH

GSSAPI_READ_DONE

READING_ADAT

READING_AUTH_DONE

QUITING

QUIT

ADAT_REPLY

READING_ADAT_DONE QUIT

OPEN

ADAT_REPLY_DONE

HPL_AUTH

OPEN_CLEAR

HPL_DONE

DECRYPT_OK

EXIT_ERROR

DECRYPT_ERR

HPL

QUITING_DONE

Figure 4: Server state machine. HPL is a FTP command here, just like any
other transfer parameter setting. OPEN_CLEAR corresponds to the state
of an authenticated client session, ready to engage in data exchange - one of
GET/PUT/DEL/LIST commands - with server. In this context, HPL lies
within �GFS� namespace.
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Pro�ling data

Pro�ling data can come into the picture to complete the design speci�cations
and the measurements.

Client software was run through valgrind "virtual machine" using the
tool callgrind. We attempt to include hints on the application structure
together with the pro�ling data. The pro�ling data is in "Instructions read"
unit, which we acknowledge to be an inadequate measure of timing: Figures
5,6 7 and 8.

Pro�ling data is sorted by total "percent" spent and is inclusive (root-
close calls contain the callee's statistics) and thus, the display technique
allows understanding both calltree structure and its typical use. On small
portions, the pro�ling data might resemble a weighted call tree/stack dump,
due to the inclusive counting, which allows display of both high level and
low level call usage statistics. System calls instructions read (IR) usage is
bar-plotted over the totals, allowing understanding the operations taking
place.

In all graphs, main tends to be equivalent to callback_space_poll, and
this is the typical structure of the application. SSL handshake plays a small
role, something below 10% of the total execution time. Pro�ling data show a
balanced call graph, with little di�erence between branches, suggesting good
modularity and previous optimizations of the toolkit. System "times" are
normed to their own maxima. Logarithmic plot avoids saturation around
large numbers and a better resolution of middle-range values.
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mainglobus_callback_space_poll

globus_l_xio_system_kickout
globus_l_xio_tcp_system_read_cb

globus_l_xio_tcp_finish_read
globus_xio_driver_finished_read

globus_l_xio_driver_op_read_kickout
globus_xio_driver_finished_read'2

globus_l_xio_driver_op_read_kickout'2
globus_i_xio_read_write_callback

globus_l_xio_read_write_callback_kickout
globus_l_io_bounce_io_cb

globus_l_ftp_stream_read_callback
globus_l_ftp_client_data_callback

globus_l_ftp_client_count_lf
data_cb

globus_ftp_client_register_read
globus_ftp_control_data_read
globus_l_ftp_data_stripe_poll

globus_l_ftp_data_stream_stripe_poll
globus_io_register_read

globus_xio_register_read
globus_l_xio_system_poll

globus_l_xio_register_readv
globus_xio_driver_pass_read

mallocglobus_l_xio_gsi_read
freeglobus_xio_driver_pass_read'2

_int_malloc
globus_memory_pop_node

globus_l_xio_tcp_read
_int_free

globus_l_xio_system_handle_read
globus_xio_driver_read_delivered

globus_xio_system_socket_register_read
globus_l_xio_system_register_read

globus_list_remove
globus_memory_push_node

globus_list_insert
globus_module_activate_proxy'2

gss_init_sec_context
globus_module_activate'2

globus_fifo_dequeue
globus_l_ftp_control_read_cb

globus_l_ftp_control_data_stream_read_write
globus_i_xio_op_destroy

Ir
sys Ir

Figure 5: gsiftp pro�le statistics.Measuring unit is the percent of total
instructions read. With green percent of instructions read by application,
with red, percent of instructions read while executing in kernel space.

Protocols

Gsiftp: blocked in the callback execution engine loop (�callback_space_poll�),
spends most of its system time waiting in select while user time is approx-
imately equally divided between di�erent �avors of read callback, as shown
in �gure 5.

System read callback (globus_l_xio_tcp_system_read_cb) is concerned
with recv operations in this case, which explains the large "time" spent in it
and its descendants, so that on small sets, the order of the pro�le �gures is
also the oder of API calls.

Callbacks are one-time callbacks, so it is natural to have them re-register
themselves and thus, appear in pro�ling �gures.

globus_ftp_data_stream_stripe_poll is used for a single stripe, as strip-
ing mode is not enabled in these experiments.

globus_l_ftp_client_data_callback ends the call sub(graph) tree that
begins with globus_l_xio_tcp_system_read_cb, eating most of its execu-
tion time.

An interesting amount of time (although still below 1%) is spent in mem-
ory operations, meaning that the toolkit might bene�t from a memory pool.

gss_init_sec_context, the SSL handshake barely make it within the
0.1% of the time
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globus_xio_system_poll is basically a call to select and data_cb is a
call to write
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globus_l_io_bounce_io_cb

globus_l_ftp_stream_read_callback
globus_l_ftp_client_data_callback
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gss_unwrap

SSL_read
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globus_xio_register_read
globus_l_xio_register_readv

globus_xio_driver_pass_read
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AES_cbc_encrypt
[/lib/libcrypto.so.0.9.8]

ssl3_mac
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EVP_DigestUpdate
SHA1_Update
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globus_l_xio_system_kickout

globus_l_xio_tcp_system_read_cb
globus_l_xio_tcp_finish_read

globus_l_xio_gsi_read_cb
globus_l_ftp_client_count_lf

ssl3_read_n
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[/lib/libcrypto.so.0.9.8]
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memcpy
malloc

free
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Figure 6: sgsiftp pro�le statistics. Measuring unit is the percent of total
instructions read. With green percent of instructions read by application,
with red, percent of instructions read while executing in kernel space.

Sgsiftp: callback space poll also plays a big role, but several other opera-
tions make it into the top as it can be observerd from Figure 6

globus_l_ftp_client_data_callback does the same as in the original
gsiftp and takes the most time of the application and application system
calls.

just below it, a new set of functions: gss_unwrap, SSL_read, ssl3_read_bytes,
are the decryption part that raise to higher places, followed by data write
data_cb

All openssl encrypt-type functions have �ags indicating direction of op-
eration, since are similar, regardless of direction.

Figures show top 50% contributors to usage statistics, both user and
system space, as reported by valgrind runs, in instructions read, as a per-
centage.
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Figure 7: Http pro�ling data

HTTP: Almost the same application structure can be found in the sec-
ondary storage transport mechanism, with a big time (long select call time
included) in globus_callback_ space_poll. Figures 7 and 8.

The rest of time spent in function calls is evenly distributed between a
larger number of functions, such that their individual amount is small and
probably there's very little to say. This might be a case where the best
explanation of the code behavior is the code itself.
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Figure 8: https pro�ling data

HTTPS: The common SSL-type of operations "emulating" globus_l_xio_gsi_
wrapped_bu�er_to_iovec, seem to take a lot of time, together with decryp-
tion and veri�cations in gss_unwrap.
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Measurements

Several transfer times have been measured in order to provide an estimate of
the transfer rate and its variation under microcontracting and encryption:

• �Wall clock� transfer time

• Resource usage statistics as provided by kernel

Although �wall clock� time provides an estimates close to the user experience,
the competing processes on the system produce noisy plots as seen from
�gure [9] and a �maximum transfer rate� could be inferred from that type
of measurements, as data points tend to accumulate eventually at the small
time(s) part of the graph.

Figure 9: Illustrative plot of di�erent measured transfer times for gsiftp
protocol. On x-axis: is the �le size in MB and on y-axis: transfer time in
seconds. User and system times overlap and obscure each other, they are
about the same, their sum is smooth: Total. Wall-clock data: NTotal- noisy
total- tend to have a large spread, increasing with the size of the transferred
�le.

Resource usage statistics provided by kernel and the sum of kernel space-
spent time and user space spent time is suitable for estimating a transfer rate.
Measurements have been performed on Linux machine[s], running kernel
Linux 2.6.32-25-generic SMP x86_64 �avor. The standard round-robin time-
sharing policy was used. CPU used was - as reported by cpuid- �Intel(R)
Core(TM) 2 Duo CPU E8500 @ 3.16GHz�
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In order to exclude other noise sources and underline better the encryp-
tion contribution to the transfer time, localhost transfer was used. TCP
stack is still used, but as far as networking is concerned, is equivalent to
memory copy, thus any I/O on networking is absent. Moreover, in�uence
of HDD I/O is limited, since operating system yields timeslice on long I/O
wait operations. All these extra contributions omitted here could be added
explicitly from separate measurements and using the notes formulated in the
next section (see relations 1,2).

Cipher suite in all encrypted communications for these measurements is
DHE-RSA-AES256-SHA1: Di�e�Hellman ephemeral, RSA authentication,
AES 256 symmetric encryption, and SHA1 HMAC. Only GET operation
was benchmarked throughout this paper and there's little reason to believe
that other type of data transfer behaves di�erently.
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Resource Usage Data

Resource usage time measurement is basically execution time �as if� mea-
sured on the execution thread of the application. As discussed in previous
section, resource usage data was taken as a measure of throughput, provid-
ing an accurate estimation of actual application throughput. It also allows
idealizing application run and can provide a best-case scenario.

The sum user time+system time spent for transfer was regarded as an de-
pendent variable, while the �le size as independent variable. The dependent
variable was considered linear in the independent variable, and the values
�tted with a line by least squares method and the covariance matrix used to
provide errors estimations in �tted parameters.

In order to have adequate pointers do discuss transfer behavior and per-
formance, we will state explicitly the �underlying model� through the equa-
tion:

T = T0 +
Size

Rate
(1)

where:
T - is the time it takes the application to transfer the �le from the server

to the client
T0- is a constant component of this transfer time
Size - is the size of the �le to be transfered
Rate - is the observable to be determined, the transfer rate.
Within these notations, T0 will account for the time to spawn the client

process, load dynamically linked modules, handshake the initial conversation
with server, and any of the operations with little dependence on �le size. The
size-dependent Size

Rate part would account for transfer and encryption and, in
a less degree, hashing and signature veri�cation.

Scaling properties

We note that the inverse of transfer rate is an additive parameter, since
transfer time is an additive parameter. Percentages transcribe for transfer
rates:

P = Rencrypted

[
1

Rencrypted
− 1

Rplaintext

]
(2)

where P is the percentage of transfer rate degradation (due to encryp-
tion), Rencrypted is the transfer rate for encrypted connection, Rplaintextis
the transfer rate for plaintext connection. We notice from relation 2 that
changes in encrypted/plaintext rates due to the same cause will cause the
�degradation of performance due to encryption� percentage to decrease.
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Frequency scaling measurements as well as CPU core a�nity setting for
server and client were performed to investigate the scaling properties of data
transfer.

A�nity setting Since transfer is measured locally, an a�nity study was
employed to outline the e�ect of running on same/di�erent CPU (core).
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Figure 10: A�nity e�ect: gsiftp protocol. For illustration purposes only 2.33
GHz results were presented here.
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Figure 11: A�nity e�ect: http[s] protocol

As it can be seen from �gure 10, gsiftp family of protocols show the
same performances, di�ering by less than 1% on di�erent a�nity masks,
so a�nity setting plays no role in this measurements. Even more, there's
a slight improvement of transfer performance on no-a�nity setting, which
could be attributed to the OS scheduler.

Http family of protocols have been considered as a comparison, and, aside
for their boosted performance in this benchmarking scenario, have the same
type of behavior as gsiftp-based ones.

They di�er within 0.5−8% with clear degradation on collocation of client
and server on the same CPU. Peak value is for same-core scheduling and is
simultaneous with high CPU load. Slight improvement occur on no-a�nity
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setting, which means the operating system scheduler does better than just
separating the client and server cores.

The apparently boosted performance for http(s) might be related to local-
host transfer, and we expect it to degrade in real-world conditions (Relation
1).

Frequency scaling One other setting that might provide insight into scal-
ing properties is the cpu frequency scaling. Even though it provides only a
small set for parameter variation, linear scaling with small deviation could
be regarded as interesting.
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Figure 12: Cpu Frequency scaling e�ect gsiftp protocol. The computed
transfer rate show the same ratio as the cpu frequencies ratio. In all cases
performance degradation due to encryption/signing is around 35% in transfer
rate.
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Figure 13: Cpu Frequency scaling e�ect on http protocol. Performance
degradation is around 67% for encryption versus plaintext version. The
performance enhancement tend to be a little lower for faster cpu freq. scaling
1.18 yields 1.14 factor of performance enhancement.

Error treatment Besides the least squares optimization procedure men-
tioned at the beginning of the section, other independent error estimation
techniques are presented here.

Round-up errors play a signi�cant role in resource usage statistics and
�time slice� is accounted as user-space or kernel-space depending where the
process spends most time.
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Figure 14: E�ect of roundup errors on resource usage statistics. Task switch-
ing before timeslice end discards the statistics for the current space and in-
crements statistics on the other �side�. The same e�ect can be observed from
�gure 18 and algorithm 1.
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Figure 15: Components of resource usage statistics. Data shows a large
granularity of time-slice, around 10 ms
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Figure 16: Wall clock time and resource usage time.
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Figure 17: Cumulative resource usage statistics histograms. Data from entire
�le range is split into percents spent on behalf of process in user and system
spaces. Histograms are normed in the sense of probability density function.
Peaks near 0% and 100% account for small �le range spurious data. gsiftp
protocol.

Since resource usage statistics show time-steps in plot, a time-resolution
evaluation of resource usage was developed.
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Figure 18: Histogram for timer resolution

Algorithm 1 Time resolution estimation for resource usage

0x08048424 <+0>: push %ebp
0x08048425 <+1>: mov %esp ,%ebp

End Cal l sequence . . . .

0x08048427 <+3>: and $ 0 x f f f f f f f 0 ,%esp
0x0804842a <+6>: sub $0x60 ,%esp

=> 0x0804842d <+9>: movl $0x1 , 0 x5c(%esp )
0x08048435 <+17>: jmp 0x804843d <main+25>

Begin For loop
0x08048437 <+19>: nop

: loop body
0x08048438 <+20>: addl $0x1 , 0 x5c(%esp ) : i++
0x0804843d <+25>: cmpl $0x0 , 0 x5c(%esp ) : loop cond i t i on
0x08048442 <+30>: jne 0x8048437 <main+19>: repeat

End For loop . . . .

0x08048444 <+32>: l e a 0x14(%esp ) ,%eax
0x08048448 <+36>: mov %eax , 0 x4(%esp )
0x0804844c <+40>: movl $0x0 ,(% esp )
0x08048453 <+47>: c a l l 0x8048344 <getrusage@plt>

A NOP loop run for MAXINT and printed usage statistics. Since no
system call is done during NOP, we expect (almost) all of system times to
be 0. Out of a total of 2600 runs, only 73 were non-zero. Resource usage
time dispersion is σ = 0.015s, 15 miliseconds, natural, since counters would
only account for timeslices during scheduled run of the process.
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Results

The main results obtained are condensed here for convenience. A degrada-
tion of performance in the case of gsiftp profocol of around 35% is noted
with main �gures of transfer rates being 30MB/s in the case of sgsiftp to
40MB/s for gsiftp. These numbers are close to the real case, since the re-
source usage data tend to accumulate close to the lower anvelope of the wall
clock time.

Http family of protocol show a bigger performance degradation of around
70% wit huge transfer rates 70MB/s for https to 200MB/s for http. In the
case of http these are ideal case numbers, since wall clock data and resource
usage data show a large gap.
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Figure 19: gsiftp family of protocols. Wall clock data together with resource
usage data.

Wall Clock Timing Statistics

Wall clock data deserves special attention, since they point to the �nal user
experience and, in the same time, have a noisy behavior, un�t to de�ne a
throughput rate.

Raw Data

Raw wall clock data account for access to the system and �network� resources
of the application, summing all delays / execution times.

Optimized servers place a considerable load on client side, making re-
source usage data a lower limit for the transfer time, as is the case of �gsiftp
family� paired with gridftp server, while the http family paired with gass
secondary storage transport share the load between client and server which
makes the wall clock time far apart from resource usage time. However re-
source usage time still gives an indication of the ideal case where a data
reservoir answers data requests from ftp client.

Statistical Properties

The nature of wall clock data is stochastic due to variable execution times of
API calls, or rather due to occurrence of random racing events, suggesting
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Figure 20: http family of protocols. wall clock data and resource usage data

a cascaded series of service queues - possible with message drops, with the
application being the central cascader for enqueueing. Dependent services
get enqueued by higher level calls and might not be be separable anymore
as distinct �gures on the probability density graphs. The whole process
might be a�ected by constant delays which would only be determined by
independent measurements.

Several types of queues can be conceptually identi�ed and they are ser-
viced in variable time-frames:

1. Operating system service - task scheduling, �local� syscalls

2. Network queues - transport queues

3. Protocol queues - encryption / decryption queues, TCP FSM, encap-
sulation / decapsulation

some of which might play an insigni�cant role in the whole process and, thus,
become indiscernible in �nal time transfer data.

Although a sequence of cascaded queues suggest a Poisson process, multi-
ple maxima in probability density function undermine this assumption. The
following �gures attempt to illustrate the description above: Figures 21, 22,
23 and 24.
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(a) gsiftp histogram data

(b) sgsiftp histogram data

Figure 21: gsiftp family of protocols. Histograms are normalized in the PDF
sense, in time and �le size. Multiple peaks are visible in accumulation of
transfer times.
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(a) http

(b) https

Figure 22: http family of protocols. Histograms are normalized in the PDF
sense, in time and �le size. A spread even larger of statistically signi�cant
values can be noticed in the large �le range.
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(b) security enhanced gsiftp

Figure 23: Time of transfer histograms for gsiftp family of protocols. Each
set is normed to the largest value to prevent large ranges to obscure small
ones. Numerical colored labels account for �le size ranges in MB, several
histograms are superimposed on the same plot.

30



0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e 
fre

qu
en

cy

0
2
4
7
10
12
15

(a) http, normed
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(b) https, normed

Figure 24: Time of transfer histograms. http family wall clock data, normed.
Numerical colored labels account for �le size ranges in MB (0-2 MB, 2-4 MB
...), several histograms are superimposed on the same plot.
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Conclusions

In this paper, a partial implementation of the security improvement de-
scribed in [18] is presented. This particular implementation takes advantage
of the security association established within TLS handshake to implement
the micro-contracts paradigm. This minimizes the overhead of cryptographic
operations for data transfer and allows one step further in assigning respon-
sability for data handling. It also addresses the non-repudiation aspect of
data processing and ownership.

A section about pro�ling data in terms of �instructions read� is presented
as an aid for design speci�cation and complementary to measurements. We
take an �inclusive� approach, where the top level contains the child call-
tree statistics and that underlines both the high level operations involved
and their �time usage�. The �non-inclusive� approach of listing the top 10%
where application spends 90% of the time would leave us with a list of low
level routines that hardly allow any comment and tend to make the whole
description as big as the code.

The investigation indicates that encryption operations climb to the top
together with memcopy operations for secure versions of protocols and that
the large gap between wall clock data and resource usage data is due to
blocking select, waiting for server response. This is simultaneous with high
CPU load on server side, as an additional note.

Gsiftp operation and its secure counterpart, show the same type of be-
havior, with crypto operations, mainly HMAC-ing being emphasized. But
contrary to http-type, blocking select plays little if any role and resource
usage data is close to the lower envelope of the wall-clock data. Also, sever-
side operations show a lower CPU load in this case.Extensive benchmarking
of GET operations is examined for gsiftp and http protocols and their se-
cure counterparts, sgsiftp and https and several angles of examination are
described. The one that yields reproducible results is the resource-usage
measurement and, in that case, besides transfer rate changes, scaling rela-
tions of the processes involved are examined. The transfer degradation in
the ideal case is estimated to 35%, expected to decrease in the real-world
case, mostly noticeable on �le sizes around/over 5 MB. The limitations of
the measurements and their meaning are stated too. A simple analysis of the
linear transfer model (1),(2) enables us to extrapolate the results to more
complicated experiments.

Further, the common, wall-clock data measurements are described and
brie�y analyzed. It turns out that deeper statistics is involved in understand-
ing this type of data, therefore a de�nite conclusion is not reached within
this paper, but directions for future research are outlined.
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