
Security in a Mobile Agent System

Guido J. van ’t Noordende, Frances M.T. Brazier, Andrew S. Tanenbaum

Vrije Universiteit, Amsterdam, The Netherlands

{guido,frances,ast}@cs.vu.nl

Abstract

This paper describes a security architecture for
the Mansion mobile agent system. Mansion is a logi-
cal framework designed to support large-scale heteroge-
nous mobile agent applications. Mansion is implemented
as a multilayered middleware system in which the low-
est layer provides functionality that is common to most
mobile agent systems and higher layers become in-
creasingly application aware. The security architecture
presented in this paper provides secure agent communi-
cation, secure mobile agent transport and startup, and
secure auditing of all changes made to agents. The sys-
tem uses self-certifying names for authenticating princi-
pals in the system and provides mechanisms to control
information flow.

1. Introduction

Mansion is a system aimed at supporting heteroge-
nous, large-scale distributed mobile agent applications.
Most current mobile multiagent systems (MASes) of-
fer little structure to application developers. Mansion
provides a clear paradigm for designing applications.

A number of advantages relating to agent mobility
have been described [5, 17, 8]. The most significant of
these is that an agent can move its computation to the
resource or data which it needs, which alleviates prob-
lems due to latency or bandwidth limitations. Security
advantages relating to using mobile code have not of-
ten been described. Our design describes such an ad-
vantage relating to information flow control.

Most existing MASes provide some degree of secu-
rity to agents and machines in the system. Often, only
part of the security issues (e.g., host protection) are
solved, leaving open several venues for attack. Usu-
ally, security solutions are tied to a single programming
language (e.g., Java) and based on protection mecha-
nisms such as user-level sandboxing [14, 18]. Mansion
supports heterogenous programming languages and at-

tempts to address security issues throughout its design,
where possible at distinct layers of the system.

Important aspects for security addressed in this pa-
per are protection of agents, protection of hosts, protec-
tion of information, and protection of the middleware.
This paper briefly introduces the Mansion paradigm
and then explains how the identified security areas are
addressed, followed by a discussion and related work.

2. The Mansion Paradigm

2.1. Logical Model and Design

An application in Mansion is modeled as a closed
world containing a set of hyperlinked rooms. Entities
in a room can be agents, objects, or hyperlinks. Each
agent is a (possibly multithreaded) process running on
one host. No part of the internal process state of an
agent can be accessed from the outside by other agents.
Objects are strictly passive: they consist of data and
code hidden by an interface and cannot invoke meth-
ods on other objects.

Hyperlinks determine how the rooms in a world are
connected. An agent can only be in one room at a time,
but can follow hyperlinks to migrate to another room.
An object may reside in only one room.

A world consists of one or more sections, each con-
taining a set of rooms. A room can only be in one sec-
tion. Each section has one or more Section Entrance
Rooms (SERs), which are the only valid entry points
for a section. An agent enters the world using a spe-
cially marked SER called the World Entrance Room.

An agent is injected into a world by its owner us-
ing a World Entrance Daemon (WED). WEDs are run
by the world’s owner and are the only way in which
a world can be entered. A WED enforces a world en-
trance policy.

When injecting an agent, an agent’s owner selects
an AgentManagement Station (AMS) for its agent from
a list provided by the WED. The AMS is trusted by
the agent owner and keeps track of the agent’s where-
abouts, such as its physical location and other facts,

AMSAMS

Room

Hyperlink

Object

Section

Agent Agent

RMORMO

Agent

Section
Entrance
Room

Figure 1. Overview of a section with two rooms.

Two AMSes are shown which keep track of

agents in the world.

throughout the lifetime of the agent. AMSes are trusted
by the world owner, but they need not be (and gener-
ally are not) managed directly by the world owner.

On world entrance, each agent receives a unique,
world-wide identifier, AgentID. This identifier can be
used by any agent to send messages to or open a
(location-transparent) connection to the agent, irre-
spective of where it is in the world.

Once in an (entry) room, an agent is automatically
registered in, and connected to, a special object in the
room, called the Room Monitor Object (RMO). The
RMO registers all content in the room. All entities,
by definition, have to be registered in the RMO of the
room they are in. In a sense, an RMO is the core of
a room, as it contains all critical data about the room
and its content.

Descriptions of entities in a room (e.g., agents, ob-
jects and hyperlinks to other rooms) are specified in At-
tribute Sets (ASes) in the RMO. An attribute set is a
set of attribute-value pairs. Example attributes are the
name of an agent or a description of an object or a tar-
get room. Attributes are defined globally per world.

Fig. 1 shows a section with two rooms. An internal
hyperlink is shown, which is essentially a pointer to an
RMO. At the left, a hyperlink from a room outside the
section to this section is shown. Also, two AMSes are
shown which keep track of agent contact information.

2.2. Physical Distribution

A world may be spread over multiple machines. In
particular, a room can be distributed by means of repli-
cation of its RMO and other objects in the room to
multiple machines. Objects in Mansion can be repli-
cated to multiple machines anywhere in the world and
be accessed remotely [1]. However, in practice the phys-
ical distribution of sections, rooms and objects is con-
strained by administrative or security concerns.

For example, sections are spread over (generally dis-
joint) sets of machines, from which the rooms in this

Process

Zone 1 Zone 18 Zone 22Zone 2

Room

Logical view

Physical view
Zone

Hyperlink

SER SER

Section A Section B

Room Room

Figure 2. Logical and physical view of a world.

section are accessible. Each section has a distribution
policy (DP), set by the section administrator, which de-
fines from which physical locations the section is reach-
able. Distribution policies are what maps the logical
world (of disjoint sections containing rooms) to the
physical world (of processes on different machines). All
rooms in a section have the same DP and the same
owner. An owner may create a new section for rooms
that have different distribution requirements than ex-
isting sections (e.g., for security reasons).

A zone is a group of processes (on a set of machines)
which is referred to by a single, cryptographically pro-
tected name, used to express distribution policies. Se-
cure naming of zones is explained in detail in section
6. All zones in a world are registered centrally with the
world owner and published in a global zone list (sec. 7).
The world’s zone list is known to all participants in a
world; only registered zones may be used in distribu-
tion policies.

An agent has to physically migrate to one of the
zones in a section before it can access a room there,
if it is not in one of the section’s zones yet. An agent
does not have to migrate physically if it follows hyper-
links within a section, as all rooms in the section share
the same DP.

Physical migration happens automatically if re-
quired when an agent follows a hyperlink. An agent can
follow a hyperlink using a method follow hyperlink pro-
vided by the Mansion API (sec. 3). This method atom-
ically transfers the agent to another room, and if nec-
essary to another physical location. If following a
hyperlink fails for any reason, the agent resumes exe-
cution where it left off.

Fig. 2 shows how two sections are mapped onto
zones. Sections are logically disjoint, but not necessar-
ily physically (i.e., section DPs may overlap). This is
useful for extending a section’s DP when load increases
or to increase availability, for example, with zones pro-
vided by a hosting company. These zones can be used
by different sections to replicate rooms on.

2.3. Example

As an example of the Mansion paradigm, consider a
shopping mall world. A shopping mall is modeled as a
number of separate sections, each representing a store
which contains a set of hyperlinked rooms. Each sec-
tion has one or more entry rooms, which act as por-
tals to the store. Each section is administered by the
store’s owner. The world owner provides a world entry
room which contains hyperlinks to the different stores
in the mall. In each room in the mall there may be ob-
jects that represent items (for example clipart or music)
for sale, and shopkeeper agents which can be queried
for information or be involved in commercial transac-
tions. The attribute sets in the room’s RMOs contain
information that helps the agent find relevant items in
the room.

Agents that represent users can roam through the
mall to find items to their liking. Agents can commu-
nicate with each other to speed up their search or no-
tify each other of interesting bargains. An agent may
take some form of digital cash with it to be able to buy
items for its owner. Items that are bought by an agent
can be transported to their owner by means of inter-
agent communication or as part of the agent, possibly
encrypted with the public key of the agent’s owner.

3. Architectural Design

3.1. Mansion Middleware

Mansion is implemented as a middleware system
which provides an application programming interface
(API) to agent programmers. This API is used by
agents to do all their work in a world. The Mansion
Middleware (MMW) acts as a reference monitor with
regard to the agent’s invocations; it takes care that
agents cannot obtain access to resources or entities out-
side the world. For example, Mansion ensures that an
agent can only use objects in its own room, and that
it can only migrate to another room by following a hy-
perlink from this room.

The Mansion Middleware mediates access to ob-
jects. A mechanism is provided by the MMW, called
binding, which is used to transparently connect to an
object, irrespective of that object’s actual physical lo-
cation. An agent only sees an object’s entity-identifier
(EntityID), an index relative to the room, which it uses
for binding.

Object types (interfaces) differ per application, and
are predefined per world. An agent is linked (statically
or at runtime) with stubs for each object type. As part
of binding, the middleware connects the agent’s stub

AppMW

Agent Operating System (AOS)

Operating System (OS)

ServiceAppMW

(network)

AgentAgentAgent

Figure 3. Middleware layering.

to the (possibly remote) object instance. The Mansion
middleware hides underlying implementation and dis-
tribution aspects from agents. When possible, an ob-
ject is replicated so that agents can access the object
from a replica close-by (possibly on their own machine);
so, agents maintain proximity to the data they use.

To provide uniform semantics when migrating, Man-
sion only supports weak migration. This means that an
agent’s execution state (e.g., stack and registers) are
not retained when an agent migrates. In effect, an agent
is killed and restarted from its initial state (as provided
by the agent programmer when it was injected in the
world) each time it migrates. This is in part because
we want to be able to support agents in any program-
ming language (e.g., Lisp, Java, binary agents), without
modification. Also, the restart semantics makes it pos-
sible to tightly control information flow (section 9.3),
something which is hard to do using strong migration.

Following a hyperlink is an atomic operation: if suc-
cesful, the agent is started up in the context of a new
room, if not, the agent resumes execution where it left
off with an error code indicating the reason for fail-
ure. In Mansion, an agent has to save whatever state it
requires, to resume execution in a useful manner, ex-
plicitly before following a hyperlink. It can store this
state in a container which is associated with the agent.
This container is explained in sec. 5.

3.2. Middleware Architecture

We designed our system as a multilayered middle-
ware system (fig. 3). The lowest layer above the oper-
ating system is called Agent Operating System (AOS).
AOS’s main function is as an abstraction layer which
hides differences in the operating systems on which it
runs from higher layers. AOS provides an interface to
higher layer middleware systems with primitives for se-
cure communication, process startup, and agent stor-
age and migration. AOS is trusted by the layers above
it.

Above AOS is a layer we call Application Middle-
ware (AppMW), which provides middleware abstrac-
tions and services specific for a given application. The
Mansion middleware (MMW) is an AppMW. Only the
AppMW layer is aware of the specific concepts, policies
and requirements for its application. The AOS layer
does not know the entities in the application that it
serves, or about trust in those entities. For example,
naming services are in the AppMW layer.

AOS is currently implemented as a (user-level) ‘ker-
nel’ process running on one host and serving one or
more applications (AppMW processes) on the same
machine. AOS and AppMW run as separate processes
communicating with each other using RPC calls over a
trusted IPC channel provided by the OS. AppMWs are
distributed over AOSes running on multiple machines;
AppMW processes interact (communicate) with each
other using mechanisms provided by AOS.

In the remainder of this paper, we first introduce se-
curity mechanisms provided by the OS and AOS layers.
Then we introduce self-certifying identifiers, a core con-
cept in Mansion. After that, we discuss Mansion spe-
cific security mechanisms. We conclude with related
work and a summary.

4. OS Level Security

Standard operating system protection mechanisms
are not sufficient for executing mobile agents in a con-
trolled way. For example, in Mansion, we want to en-
sure that an agent cannot bind to an object in a differ-
ent room, or set up connections to arbitrary endpoints
outside the system. Particularly, we have to make sure
that an agent can only communicate (using IPC) with
its middleware, so that it cannot bypass the middle-
ware’s access control mechanisms.

User-level sandboxing techniques such as provided
for many type-safe languages such as Java and Safe-Tcl
[18] provide mechanisms to control the actions that an
agent may take. The required constriction of an agent
in the way needed for Mansion is obtainable in most
user-level sandboxes. However, current sandboxes have
inherent vulnerabilities and may contain bugs that can
put the system at risk [9, 25].

Current research indicates the need to include a ’red
line’, or kernel abstraction [10, 25] in user-level sand-
boxes, particularly the JVM. We chose to revert to OS
kernel level protection mechanisms where possible; we
feel that, even if we have user-level sandboxes at our
disposal, additional protection is needed to protect the
system from malicious (binary) agents or implementa-
tion errors which may expose the system to risk. We
implemented system call interception (jailing) in Linux

[2]. A jail catches all system calls of a (binary) child
process, and reflects them to a user-level process (the
jailer). The jailer evaluates if the system call may pro-
ceed or not based on a policy file and informs the OS
kernel of its decision. A similar jailing facility exists
in the FreeBSD operating system [21]. In our system,
the jailer is part of AOS on those platforms where jail-
ing exists.

5. AOS Level Security

AOS provides a secure container for storing an agent
and its data, called an Agent Container (AC). The AC
is used for shipping an agent between AOSes running
on different machines. The AC is a small, portable file
system, managed by AOS, which can be shipped to
any platform running AOS to start the agent and ac-
cess its associated data there. The AC consists of a set
of typed segments, essentially binary files. An example
segment-type is code. Segments also have a subtype de-
scription, which can for example describe the specific
code type in the segment, e.g., Java 1.3 bytecode. Seg-
ments may be persistent or transient. Transient seg-
ments may be changed or deleted. Persistent segments
may not be modified. A transient segment can be made
persistent but not the other way around.

Each AC has a table of content (TOC) with an entry
per segment containing its name, type, subtype, a per-
sistence bit, and a checksum (SHA-1 hash) of the seg-
ment’s content. Checksums are generated only when
an agent is migrated. AOS contains a basic AC in-
tegrity verification mechanism based on the TOC as
part of the agent migration protocol with which an
agent is shipped to another AOS kernel. Prior to send-
ing an agent, the sending AOS signs the AC’s TOC
using its private key. The receiving AOS can now ver-
ify the AC’s integrity by verification of the checksums
and the signature. If the AC checks out, the TOC is
signed by the receiving AOS and sent back as a receipt
which finalizes the migration. Signing is primarily in-
tended for integrity verification and protection against
tampering when an AC is shipped over a weakly pro-
tected channel. The signed receipt can in addition be
stored by AOS as a potential defense against claims
that it sent a different AC than it did.

AOS provides a mechanism for starting up an agent
in a controlled way. An agent is started up in what
is called a context. A context is basically a process.
If possible, contexts are jailed. Mansion supports only
single-process agents, i.e. one agent per context. How-
ever, other middleware systems may use a context to
run multiple agents in. A context with more than one
agent is called an agent server. Jailing (or sandbox-

ing) is used to make sure that a context can only do
operations (make RPC calls) to its AppMW via a pre-
defined IPC channel and cannot make connections to
external programs.

Depending on the available user-level sandboxes
(e.g., a JVM implementation) and the availability of
jailing, a given AOS instance supports startup of con-
texts (agents) written in one or more base languages,
such as Java, Python or Safe-Tcl. A configuration file is
used to specify the specific interpreters, or virtual ma-
chines, and startup options (e.g., for sandbox configu-
ration) that are to be used for specific code subtypes.
If no entry for a given code subtype exist, correspond-
ing agent code segments will not be started up.

6. Self-certifying Identifiers

In Mansion, principals are represented by public
keys. Principals can be users, agents or processes. A
Self-certifying Identifier (ScID) [7] is the base32 en-
coded 160 bit SHA-1 hash of a (PKCS#1/RFC3280 en-
coded) public RSA key. The base32 encoding yields a
32 byte character string which is filename safe, i.e., the
characters used in the base32 encoding contains char-
acters that can be used in a filename or in a URL.
ScIDs have a fixed size independent of the public key’s
length.

The public key corresponding to a ScID is stored in
a self-signed certificate. Principals named using ScIDs
are:

• Owners. An OwnerID is a shorthand for an agent
or other entity owner - this is the SHA-1 hash of
the public key of the owner. Often, ownerIDs are
used in access control policies or lists. An agent
owner’s certificate and OwnerID are sent along
with an agent in its AC.

• Endpoints. An EndpointID indicates an individ-
ual (nonreplicated) AOS or AppMW process or
service, which has its own public / private key-
pair and a valid self-signed certificate.

• Zones. A ZoneID is used to securely name a group
of processes which share a single ScID.

A ZoneID corresponds to the SHA-1 hash of the public
zone key of the zone administrator. All zone members
(i.e., processes in a zone) have their own private/public
keypair. This is important, as it makes it possible to
distinguish individual zone members. Each zone mem-
ber has a zone certificate, signed using the private zone
key, which contains the process’es public key and has
an expiration date. The zone certificate proves that the
process is part of the zone indicated by ZoneID. In

Mansion, ZoneIDs are used to authenticate AppMW
(Mansion middleware) level processes and services.

By using a separate key pair for each member, it is
possible to identify a malicious zone member and re-
move it from a zone, or otherwise make changes to zone
membership, without changing the ZoneID. The valid-
ity of the zone certificate is checked at connection time.

ScIDs can be created and used in a completely de-
centralized manner. Anyone can create a new zone by
creating a public / private key pair and issuing zone
certificates without needing any central authority. Note
that because ScIDs are self-certifying, there is no need
for an external, trusted, binding between a key and a
name, such as needed in e.g., x509. An application has
complete freedom of creating trust overlay structures
using ScIDs.

We wrote a library, zonelib1, based on the OpenSSL
toolkit, for automatically setting up secure (encrypted,
reliable), authenticated channels based on Zone or End-
pointIDs. Whether the target is a zone member or end-
point is automatically detected. When a connection is
set up to a process, it is requested for its endpoint or
zone member certificate, and if applicable the zone’s
public key certificate. The relevant certificate’s key is
matched against ScID. The server asks for the same
information if bidirectional authentication is required.
An RSA authentication and key exchange protocol is
invoked based on the exchanged public key(s) to set up
a secure, authenticated channel.

7. Per World Trust Infrastructure

In Mansion, ScIDs are used to create a world-wide
trust infrastructure. The world owner’s key is the root
of the world’s PKI. The world owner signs lists contain-
ing the ScIDs of registered zones, WEDs, agent man-
agement stations, and other (trusted) principals in a
world, and issues them to all members of the world.2

Generally, the world owner requires registrants to
provide details regarding (world-defined) properties of
the zone (or other ScID) they want to register. In that
sense, the world administrator acts as a ’traditional’
CA, which binds properties to keys (ScIDs). For exam-
ple, a zone administrator’s company name, or a zone’s
intended purpose may be given in the world’s zone list.
This is also the way in which zones can be mapped onto
existing administratives domains.

1 http://www.cs.vu.nl/˜guido/projects/zonelib/

2 Those lists are part of the World Information System (WIS),
which essentially consists of the set of datastructures and doc-
uments which are needed to make a world work. Its implemen-
tation will be briefly touched upon in section 11.

A zone must be on the world’s zone list if it is used
in a world. Zones that breach confidence can be re-
moved from the world’s zone list; only registered zones
may be used in a world, for example, in a section’s dis-
tribution policy.

The fact that ScIDs are registered does not mean
that every principal trusts them. For example, a sec-
tion distribution policy only contains zones which are
trusted by the section owner. Similarly, an agent owner
can select zones it trusts at world entrance, and place
them in a trusted zone list embedded in the agent’s
agent container. If an agent has a trusted zone list,
it may only be physically migrated to zones in this list.

A section owner can take action (i.e., remove a
zone from the section’s distribution policy) if trust
is breached, without involving the world owner. Zone
members can be removed from a zone if they breach the
trust of the zone’s administrator, by blacklisting or ex-
piration of their zone certificate3.

Individual zone members are not known a-priori,
they are listed in a (not necessarily trusted) location
service (e.g., DNS); the middleware authenticates zone
members when a connection is made.

8. Secure Communication

AOS is used to set up protected AOS-to-AOS chan-
nels for the purpose of shipping an AC and to facilitate
secure AppMW-to-AppMW level communication. Mu-
tually authenticated, encrypted AOS-level channels are
set up using an (EndpointID based) authentication and
key exchange protocol at the AOS level. Session man-
agement and multiplexing connections over a single en-
crypted AOS-to-AOS connection avoid the expense of
key generation for every connection.

An AppMW-level middleware process or service
(e.g., naming service) has an index relative to AOS
which indicates the specific process that the connec-
tion is intended for. In case of agent migration, in-
dex indicates the AppMW for which an AC shipped by
AOS is intended. Agents in turn have an index rela-
tive to an AppMW level process. (fig. 4).

In Mansion, a separate zone authentication step
(sec. 6) is made over the AppMW-to-AppMW chan-
nel set up by AOS to authenticate the AppMW level
process as a zone member. An authenticated and en-
crypted channel can also be set up separately at the
AppMW level when end-to-end security (e.g., secrecy)
is required.

3 Theaddress of ablacklist servermaybe stored in the zonemem-
ber’s certificate.

Encrypted Channel

AgentAgentAgentAgentAgent

AOS

AppMW Service

Host 2

Network

AppMW Service

AOS

Host 1

Figure 4. Communication through Middleware.

9. Application Middleware Security

This section explains application middleware level
security, with an emphasis on Mansion security mech-
anisms. Most mechanisms described are also applicable
outside the context of Mansion.

9.1. Agent Authentication

Authentication is a problematic issue in mobile
agent systems. In general, mobile agents cannot carry
private keys or other secrets such as capabilities with
them, with which they can authenticate themselves.
An agent’s code and data, if unencrypted, can be in-
spected by any host on the agent’s itinerary, so secrets
can be easily extracted from the agent.

Some solutions exist which may be useful to hide
secrets such as private keys in an agent, e.g., code-
obfuscation (cloaking) or time-limited blackbox [15]
techniques. However, none of these techniques are us-
able for general-purpose heterogenous agents at this
time [13].

Agent authentication in Mansion is based on code
signing using the Agent Passport (AP) (see also [23])
concept. An AP is composed of a set of signatures of
the agent’s code4 and the public key certificate(s) of
the signer(s). In particular, the agent’s owner signs the
Agent Passport; this signature declares that the agent
has been sent into the system on behalf of this owner
so a middleware that receives the agent can find out
which principal owns the agent.

Using the owner’s code-signature in the agent pass-
port, the agent’s OwnerID can be verified. OwnerID is
used in access control lists, among other things.

The binding between an agent’s AgentID, initial
data segments, code segments, AP and other segments
such as the agent owner’s public key, is created by
the trusted world entrance daemon which signed the

4 This can be executable or interpretable code stored inside the
AC, or it can be a pointer to a server from which the code can
be fetched (e.g., a UR).

agent’s AC at world entrance. This binding is impor-
tant to prevent an attacker from launching a copy of
an agent with original code and AP, but otherwise dif-
ferent, to impersonate the agent’s owner. A WED au-
thenticates the agent’s owner prior to signing the AC
to avoid this attack.

Another signer of code segments may be the agent’s
author, and/or the signature of a code verification com-
pany. Using these signatures, an AppMW/AOS com-
bination can establish trust in the safety of an agent’s
code in absense of trused sandboxes or OS-level jail-
ing. Code signing is particularly imporant for support-
ing binary code, but may also help protect against ex-
ploitation of weaknesses in user-level sandboxes.

9.2. Authorization and Access Control

Objects are protected by distribution and ac-
cess control policies. Each object has an access con-
trol list (ACL) which specifies which principals may
access which methods of the object. An ACL con-
tains a list of OwnerID - access rights entries. Access
rights are expressed in a bitmap, where each bit spec-
ifies if access is allowed (1) or not (0). The bits in
the bitmap correspond to the methods of the ob-
ject as defined in the object’s class definition. An ex-
ample is: 3r7xx3q4aynsljossb5kywfcrnvkwwvy: 110011.
Here, agent owner 3r7xx3q4aynsljossb5kywfcrnvkwwvy
has the right to access the first two methods of the ob-
ject, and the last two. Method 3 and 4 may not
be invoked by agents of this owner. ACLs can con-
tain a default entry for unknown agent owners.

Access control is enforced by the Mansion middle-
ware on behalf of the object. Mansion middleware can
only mediate access to an object if it is allowed access
itself, which depends on a (section wide) distribution
policy expressed in terms of zones. An object in Man-
sion in fact resides in a protected Object Server which
runs as a separate AppMW level process in the same
zone as the Mansion middleware. Details regarding se-
cure binding and replication of objects [3] are hidden
inside the object server and are outside the scope of
this paper.

Room entrance is controlled by the target room
RMO’s ACL. If the target room is in the agent’s cur-
rent section, the RMO’s ACL is verified by the middle-
ware prior to registering the agent in the room. If the
agent’s OwnerID (or a default entry) is not present in
the ACL, entering the room will fail. If it is present, the
agent is unregistered from its current room and regis-
tered in the target room. If the target room is not acces-
sible from the agent’s current zone, the target room’s

ACL is checked as part of the agent transfer proto-
col prior to actual shipment of the agent’s AC.

9.3. Confined Rooms

Mansion provides a simple but powerful concept to
control information flow called a confined room. If an
agent enters a confined room, its communication with
the outside world is cut off. An agent cannot commu-
nicate with any other agent or make any changes (e.g.,
remove or add data segments) to its AC. It can only ex-
port information from the room via a special agent in
the confined room called the ‘guardian agent.’

A confined agent can interact with objects in its
room, inspect data freely, and communicate with other
agents in the room. To export information from the
confined room, the agent has to tell the guardian
agent, for example by giving an index into a list of ex-
portable documents. It can not pass data directly to
the guardian to prevent covert channels via informa-
tion hidden in this data by an agent. Once an agent
has exited the confined room (it is restarted), it can
ask the guardian agent for copies of the information it
requested while it was inside, possibly in return for pay-
ment.

As an example, a photo database may contain high-
resolution scans of paintings, available to researchers.
The database owner may welcome agents to inspect
the pictures, but may not want the pictures to be
exported to a client’s machine for copyright reasons.
The database owner can place its pictures inside a
(database) object in a confined room, to which re-
searchers can send agents. Those agents can then in-
spect the database on any property (not just indexed
terms), yet exporting pictures from the database is un-
der complete control of the database owner. Agents
only have to pay for the pictures they actually require.

10. Agent Protection Mechanisms

By nature, mobile agents are vulnerable [13]. In par-
ticular, a host that an agent visits may be malicious in
various ways, either passive by trying to extract in-
formation from the agent, or more active, by delet-
ing or trying to modify (parts of) an agent, feeding
it false information, or sending the agent on a differ-
ent route than it would do when operating according
to its own, internal logic. Another avenue for attack
involves attacking the system’s agent location service,
such that communication to agents may be tampered
with or sidetracked to an interposing agent. This sec-
tion presents some solutions to these problems.

10.1. Agent Management Service

The AMS is a set of services running in a single zone,
which keep track of various aspects of an agent dur-
ing its lifetime in a world. The primary service in an
AMS is a location (lookup) service for the contact ad-
dresses of the agents managed by the AMS. Other ser-
vices can include an auditor process (sec. 10.2) or a
notary process used in commercial transactions [12].
Each world may have multiple AMSes, each running
in its own zone; each AMS can keep track of multi-
ple agents. AMSes can be replicated to increase avail-
ability and reliability.

Each agent has an AgentID which consists of the
ZoneID of the agent’s AMS, and an index relative to
the AMS (indicating the agent). Any middleware that
needs to contact an agent (to establish inter-agent com-
munication) can request authoritive contact informa-
tion from that agent’s AMS. Middleware can authen-
ticate the AMS using the ZoneID in AgentID.

10.2. Audit Trails

An audit trail is a secure log of the changes that were
made to an agent’s AC throughout its itinerary. Audit
trails are important for mobile agents that migrate over
a multihop itinerary of not necessarily trusted mid-
dleware processes and hosts. As an example, persis-
tent segments may be used by an agent to store lowest
price information on some product. Different compa-
nies on the agent’s itinerary may have an incentive to
remove or change existing persistent segments in the
AC to make their own offer look better than earlier
ones, even though their offer is really worse. Clearly,
it is important to detect tampering of persistent seg-
ments in this way. Audit trails are used to detect if and
where an AC has been tampered with.

Mansion provides an audit trail mechanism which
helps to protect against tampering an agent’s persis-
tent state throughouth a multihop itinerary. The audit
trail is based on the AC’s TOC which describes all seg-
ments in the AC (sec. 5).

To establish an audit trail, each time an agent mi-
grates to another middleware, the agent’s current mid-
dleware signs the agent’s TOC (reflecting the AC’s cur-
rent content) with its private key. In addition to the
signed TOC, the public key certificate (chain) of the
signer is stored in the AC to facilitate identification of
the signer. By retaining old TOCs as part of the AC
(before the new one is signed), a complete audit trail is
established of the changes that were made to the AC on
its itinerary. The trusted world entrance daemon signs

b)

 A

Code AP DataS
(A)(B)

S

S
(A)

Code AP Data

Data

a)

TOC

TOC B

Figure 5. Development of an Audit Trail

the first TOC; every itinerary and audit trail starts at
a WED (all WEDs are known in a world).

An example audit trail is shown in fig. 5. 5a shows
the AC as it arrived at middleware B. On middleware
B, a data segment was added. TOC A has become part
of the AC as a persistent segment of type toc. Fig. 5b
shows the TOC as it leaves middleware B. A compari-
son of TOC A and TOC B show exactly what changes
were made to the AC on middleware B.

In addition to verifying that no persistent segments
were changed or removed, it is possible to store a more
general ‘AC-change’ policy in a persistent segment in
the AC and evaluate that with every migration. An
AC-change policy may, for example, specify that only
a maximum number of transient segments may be re-
moved at each hop. This can be a used to limit the
amount of e-cash that can be spent at each hop [12].
Another rule which can be verified using the audit trail
is that the agent has only been sent to zones in the
agent’s trusted zone list (sec. 7).

Some attacks are possible on the audit trail if it is
stored only in the AC, particularly rollback to an ear-
lier state of the AC when there are cycles in the agent’s
itinerary. Different methods exist to prevent these at-
tacks, such as sending the signed TOCs to an exter-
nal auditor process in addition to storing them in the
AC. Other solutions were discussed in [12] and [19].

10.3. The Agent Handoff Protocol

To protect the agent as well as its contact informa-
tion in the AMS, an agent handoff protocol is used as
part of Mansion’s agent migration protocol.

The handoff protocol is based on AC integrity veri-
fication using the audit trail / TOC verification mech-
anism discussed in section 10.2. If an AC appears tam-
pered with, either because its signature or TOC is not
correct or because the audit trail shows that illegit-
imate changes were made to the AC, the migration
protocol will be aborted. An agent’s AgentID and con-
tact information are initially registered in the AMS by
the agent’s world entrance daemon. On migration, the

MW A MW B
2

4/5

3

AMS

1 4/5

Figure 6. The Handoff Protocol

sending and the receiving middleware have to exchange
proof that they agree to the agent’s migration before
the agent’s contact information in the AMS is updated.

The handoff protocol protects both the agent and its
contact information in the AMS. Agent migration of an
agent is only official when the agent’s location is up-
dated at its AMS. Not accepting a tampered-with AC
effectively confines an agent to its current middleware;
this stops a maliciously altered agent (AC) from mi-
grating any further in an incorrect state.

The handoff protocol works as follows (fig. 6).
To initiate migration, middleware A sends an
init migration(AgentID, target) message to the agent’s
AMS (step 1). AgentID’s AMS knows the agent’s cur-
rent middleware’s location and ScID (ZoneID). It uses
this information to authenticate the init migration re-
quest; only a request coming from the agent’s current
middleware is accepted. Target contains the tar-
get middleware’s address and ScID. Next the agent’s
AC is sent to B (2)5. B verifies that the AC’s TOC cor-
responds to the segments in the AC and that no illegit-
imate changes were made to the AC (e.g., no persistent
segments were removed or changed) in the way de-
scribed in section 10.2

If B accepts the agent, it also signs the TOC and
sends the (now doubly signed) TOC to middleware A
as a receipt (3). To finalize the agent contact infor-
mation update, A and B both send an authenticated
(signed) commit migration message to the agent’s AMS
(4). If A or B do not agree to the migration (for what-
ever reason), they can abort the migration transaction
at any time in the protocol (5).

In addition, A sends the doubly signed TOC to an
external auditor process, which is part of the agent’s
AMS and runs in the AMS’es zone. The auditor pro-
cess timestamps and archives the received TOCs as a
secure record of an agent’s whereabouts over time.

5 For simplicity we assume that the AC is directly sent to B. In
reality, the AC is sent to the AOS kernel used by B and handed
off to MMW. Details of how this detail is solved are outside the
scope of this paper.

11. Decentralization, Scalability and Se-

curity

The scalability of a world depends on the way in
which information is distributed. Many parts of a world
can be managed decentralized. Examples of decentrally
managed world parts are sections, which in turn make
use of decentrally administered zones. Furthermore,
most information is only stored in untrusted services,
for which existing large-scale infrastructures such as
DNS or the web may be used. This is an advantage of
using connection-time authentication using ScIDs, as
explained in section 6.

A few documents and data structures are managed
globally, which bind the world together. These docu-
ments and data structures are conceptually part of a
global World Information System (WIS), which is the
only world part which has to be managed directly by
the world designer. Example data in the WIS are the
world’s zone list, zone revocation list, AMS list, and
WED list.

The WIS implementation details are purposefully
left open to allow for different implementations. For
example, when a WIS document is updated or has ex-
pired, it can be uploaded to section entry daemons or
some zone member processes. These processes can dis-
tribute the information as soon as they are contacted
by other middleware processes, so that the informa-
tion perculates over the system eventually. WIS infor-
mation is mostly CA related information and generally
requires no absolute consistency, as the information it-
self has an expiration date which can be tuned to the
application’s consistency or security requirements.

When WIS information has expired, it should no
longer be used, and action should be taken to obtain
up-to-date information. A small set of trusted servers
(e.g., in a trusted zone owned by the world designer)
per world may suffice to answer requests for immedi-
ate provision of such information.

12. Privacy and Anonymity

Mansion protects against tracing of the agent’s
whereabouts and interests. In a room an agent is
not known by its global AgentID, but by its Enti-
tyID (sec. 3.1) EntityID is used as a pseudonym to con-
nect to an agent, so that agents do not need to adver-
tise their AgentIDs in every room they enter. Agents
can pass their AgentID to other agents once a ‘lo-
cal’ contact has been established.

An agent’s logical itinerary (accessed rooms) is not
registered in any global Mansion service or in the
agent’s AC. Only the agent’s own (current) middleware

knows what the agent has done and where it’s been for
the duration that the agent was there. An agent’s phys-
ical address can be looked up in the agent location ser-
vice. However, as an agent does not always need to
migrate physically when it follows a hyperlink (many
hyperlinks will be relative to the agent’s current sec-
tion), not much information is obtained from polling
an agent’s contact information from its AMS in gen-
eral.

Anonymity is not currently provided by Mansion, al-
though mechanisms based on world entrance daemons
which act as an anonymizer are conceivable. For ex-
ample, the agent’s code signature in the AP could be
replaced by a signature using a WED’s key or a tem-
porary key. Such a key cannot be traced back to the
agent’s owner, except possibly through the WED. If the
rule that an agent owner needs to authenticate itself to
the WED is loosened, agents can even be shipped to a
WED through various additional layers of anonymiza-
tion, similar to anonymous remailer systems. Note that
the latter mechanism makes it impossible to enforce
world access restrictions based on (preregistered) agent
owner authentication, such as a limit on the number of
agents allowed into a world per agent owner.

13. Related Work

Self-certifying identifiers were first introduced in the
secure file system (SFS) [7]. In SFS, ScIDs are used
as part of self-certifying pathnames. However, SFS is
based on authenticating single hosts on which files are
placed, rather than on authenticating groups of pro-
cesses (zones) in a location-indpendent way, as we do.

Telescript [17] was the first commercial mobile agent
system, and pioneered many of the concepts common to
all mobile agent systems, including Mansion. Telescript
had places, comparable to rooms, and regions, compa-
rable to sections/zones. Telescript had no hyperlinks
(nor does any other agent system). Places in Telescript
mapped onto single machines. Telescript featured an
interpreted, object-oriented language which contained
primitives to migrate to a place (using strong migra-
tion), and to communicate or colocate (meet) with
other agents. Most if not all mobile agent systems have
similar concepts as Telescript.

With the advent of Java at the end of the ’90s, a
large number of Java-based mobile agent systems were
designed and built [19, 20, 8, 16]. Those systems are
largely dependent on the security and platform neutral-
ity provided by Java. Most current systems use strong
migration based on a modified JVM. JavaSeal [4] pro-
vides a ‘kernel’ providing general abstractions usable
for programming secure Java agent systems. Ajanta

[19] is a Java-based agent system which has a simi-
lar audit trail mechanism as Mansion. However, the
Ajanta scheme is limited by the fact that at each hop
the TOC is encrypted. Therefore, audit trail inspec-
tion can only take place when an agent gets home.

Most systems focus primarily on the (mobile) agent
paradigm, although some systems also support dis-
tributed objects [11]. Few if any existing system sepa-
rates logical from physical location (allowing for repli-
cation or remote access to logical locations) in a way
similar to Mansion.

Only few systems support heterogenous agents, an
important example being D’Agents (formerly Agent-
Tcl) [24], which supports Tcl, Scheme and Java agents.
An earlier system that supported heterogenous agents
was TACOMA [6]. TACOMA used a ‘folder’ concept,
similar to an AC (but unprotected), which could be
used to contain several implementations of an agent
and its associated data. Ara [23] supports heteroge-
nous agents and strong migration (using modified in-
terpreters), distinguishes mutable and immutable parts
of an agent’s execution state, and has an agent pass-
port concept similar to Mansion.

Most systems emphasize an ’open’ model, with
loosely coupled places (e.g., [22]). In open mod-
els, an agent’s environment is dynamic and offers lit-
tle structure to agents. Mansion, in contrast, bases
much of its security (notably its trust infrastruc-
ture) on a closed world concept, which is also used
to structure applications. Hyperlinks and rooms pro-
vide structure to application developers and agents
roaming the world.

14. Summary

In this paper, a security architecture for the Man-
sion mobile agent framework was presented. Mansion
provides a clear logical paradigm for structuring worlds
consisting of sections, rooms and hyperlinks. Confined
rooms show how Mansion’s logical structure can be
used to control information flow.

A layered middleware design is introduced for sup-
porting heterogenous agents and platforms. The lowest
layer (AOS) hides the underlying platforms from higher
layers and provides minimal functionality common to
most mobile agent systems: secure agent storage, agent
transport, secure connections and secure process exe-
cution. On this layer we build various Mansion (ap-
plication) specific security mechanisms: authentication
and authorization, control over migration, auditing of
changes to agents, and protection of the agent’s con-
tact information.

Self-certifying identifiers are used pervasively
throughout the system to simplify key management,
authentication, and the specification of access con-
trol lists and distribution policies. Mansion worlds
are mapped onto an overlay network consisting of se-
curely named groups of processes called zones. Zone
properties are defined in an application-dependent
manner by the world designer. Despite the decen-
tralization inherent in parts of the design, worlds
are closed: principals in a world are recognized and
trusted only if they are part of the world’s trust infras-
tructure, which is rooted by the world owner’s public
key. A world owner can delegate most functional-
ity and administrative tasks (e.g., AMS management)
to any subsidiary by including it in a world member-
ship list signed by the world owner.

Acknowledgements

We like to thank Benno Overeinder, Etienne
Posthumus, and David Mobach for useful discus-
sions on the model. Etienne Posthumus imple-
mented AOS. Adam Balogh implemented Linux jail-
ing. Bruno Crispo, Melanie Rieback, and Ruediger
Weis gave useful feedback on early drafts of this pa-
per. We also thank the anonymous reviewers for their
helpful comments, and Stichting NLnet for their sup-
port.

References

[1] A. Bakker; M. van Steen; and A.S. Tanenbaum. From
Remote Objects to Physically Distributed Objects.
Proc. 7th IEEE Workshop on Future Trends of Dis-
tributed Computing Systems, December 1999. pp. 47-52.

[2] A. Balogh. New Object Server for Globe. Master’s The-
sis, Vrije Universiteit, The Netherlands, 2003.

[3] B.C. Popescu; M. van Steen; A.S. Tanenbaum. A Se-
curity Architecture for Object-Based Distributed Sys-
tems. Proc. 18th IEEE Annual Computer Security Ap-
plications Conference, December 2002. pp. 161-171.

[4] C. Bryce and J. Vitek. The JavaSeal Mobile Agent Ker-
nel. Autonomous Agents and Multi-Agent Systems 4,
2001. pp. 359-384.

[5] D.Chess;B.Grosof;C.Harrison;D.Levine;C.Parris;G.
Tsudik. Itinerant Agents for Mobile Computing. IEEE
Personal Communications, 4(5):34–49, October 1995.

[6] D. Johansen; R. van Renesse; F.B. Schneider. Operat-
ing systems support for mobile agents. 5th Workshop on
Hot Topics in Operating Systems, 1995. pp. 42-45.

[7] D. Mazieres; M. Kaminsky; M.F. Kaashoek; E. Witchel.
Separating Key Management From File System Secu-
rity. 17th ACM Symposium on Operating Systems Prin-
ciples, 1999. pp. 124-139.

[8] D. Milojicic; F. Douglis; R. Wheeler, eds. Mobility: pro-
cesses, computers and agents. ACM Press, 1999.

[9] D.S. Wallach; D. Balfanz; D. Dean; E.W. Felten. Exten-
sible Security Architectures for Java. 16th ACM Sym-
posium on Operating Systems Principles, 1997. pp. 116-
128.

[10] G. Back and W. Hsieh. Drawing the Red Line in Java.
Workshop on Hot Topics in Operating Systems (HotOS
VII), 1999. pp. 116-121.

[11] G. Glass. ObjectSpace Voyager Core Package Techni-
cal Overview. www.objectspace.com. In Milojicic et al.,
(eds). Mobility: processes, computers and agents, ACM
press, 1999, pp. 611-627.

[12] G. van ’t Noordende; F.M.T. Brazier; A.S. Tanenbaum.
A Security Framework for a Mobile Agent System. 2nd
Int’l Workshop on Security of Mobile Multiagent Sys-
tems (SEMAS), July 2002. Bologna, Italy. pp. 43-50.

[13] G.Vigna (ed.). MobileAgents andSecurity. LNCS1419,
1998. Springer-Verlag.

[14] L. Gong. Inside Java 2 Platform Security: Architecture,
API Design, and Implementation. Addison-Wesley,
June 1999.

[15] F. Hohl. Time Limited Blackbox Security: Protecting
Mobile Agents from Malicious Hosts. Mobile Agents and
Security, 1998. LNCS 1419, Springer-Verlag pp. 154-
187.

[16] J. Baumann; F. Hohl; M. Strasser; K. Rothermel. Mole
- Concepts of a Mobile Agent System. Technical Report,
Universität Stuttgart, August 1997.

[17] J.E. White. Telescript Technology: Mobile Agents.
White paper, General Magic, 1996.

[18] J.K. Ousterhout; H.Y. Levy; B.B. Welch. The Safe-
Tcl Security Model. Mobile Agents and Security, 1998.
LNCS 1419, Springer-Verlag.

[19] N. Karnik and A. Tripathi. Security in the Ajanta Mo-
bile Agent System. Software - Practice and Experience
31(4), 2001. pp. 301-329.

[20] D. Lange and M. Othima. Mobile Agentswith Java: The
Aglet API. World Wide Web 1(3), September 1998.

[21] N. Provos. Improving Host Security with System Call
Policies. Proc. 12th USENIX Security Symposium, Au-
gust 2003. pp. 257-272.

[22] N.J.E. Wijngaards; B.J. Overeinder; M. van Steen;
F.M.T.Brazier. Supporting Internet-ScaleMulti-Agent
Systems. Data and Knowledge Engineering 41(2-3),
2002. pp. 229-245.

[23] H.Peine. SecurityConcepts and Implementation for the
Ara Mobile Agent System. 7th IEEE Workshop on En-
ablingTechnologies: Infrastructure forCollaborativeEn-
terprises, June 1998.

[24] R.S. Gray; D. Kotz; G. Cybenko; D. Rus. D’Agents:
Security in a Multiple-language, Mobile-agent System.
MobileAgents and Security, 1998. LNCS1419, Springer-
Verlag pp. 154-187.

[25] W.Binder andV.Roth. Securemobile agent systemsus-
ing Java: where are we heading? Proceedings of the 2002
ACM Symposium on Applied Computing, 2002. pp. 115-
119.

