Guarding Security Sensitive Content using Confined Mobile gents

Guido van 't Noordende
Vrije Universiteit
De Boelelaan 1081
1081HV Amsterdam
The Netherlands

guido@cs.vu.nl

ABSTRACT

Mobile code and mobile agents are generally associatedsetth-
rity vulnerabilities, rather than with increased securithis paper
describes an approach in which mobile agentscardined,in or-
der to allow content providers to retain control over howirtdata
is exported while allowing agents to search the full contdrthis
data locally. This approach offers increased control ardiréty
compared to the traditional client-server technologiesmmonly
used for building distributed systems. We describe a neweys
called Mansion, which implements confinement of mobile &gen
and describe a number of applications of the confinement htode
illustrate its potential.

Keywords

Mobile Agents, Confinement, Information Flow Control

1. INTRODUCTION

Current distributed system architectures such as the web, w
services, and distributed object systems [1, 2], are eisdigmient-
server based. These systems often provide some securityamec
nisms such as client or user authentication [3, 4], but arakves
enforcing information flow control policies. As soon as anti
has access to a document or data file, its contents are voleéna
that the client can redistribute this information to unauiked par-
ties. A number of approaches attempt to minimize the riskuohs
unwarranted dissemination of security sensitive conteigital
Rights Management (DRM) [6] is an approach which can prevent
unwarranted content redistribution by using secure hareloa the
client side. However, such hardware may not always be dlajla
must be authenticated, and may not be fully trusted by théeodn
provider. Therefore, DRM may not be feasible in all applicas.
Some detection mechanisms (such as watermarking [5]) &mg be
developed which do not depend on secure hardware, but éhatea
low for detection of information leakage once it has ocadirpy
including information in the data which can be used to ddesait-
age after the fact, and/or provide information leading bickhe
principal that leaked this information. However, for canttypes
of data, it may be impossible to include such informatiorhimdata

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAC’'07March 11-15, 2007, Seoul, Korea

Copyright 2007 ACM 1-59593-480-4 /07/0003$5.00.

Frances M.T. Brazier
Vrije Universiteit
De Boelelaan 1081
1081HV Amsterdam
The Netherlands

frances@cs.vu.nl

Andrew S. Tanenbaum
Vrije Universiteit
De Boelelaan 1081
1081HV Amsterdam
The Netherlands

ast@cs.vu.nl

without compromizing usability of this data. In additiorgtdction
of leakage after the fact may not be enough for some appitsti
For example, medical data may contain privacy sensitiveriné-
tion that should never be exposed to unauthorized thirdgsarhs a
result, security sensitive data with dissemination c@sts is most
often not remotely accessible. For example, medical dagansr-
ally stored in off-line medical information sytems, andyatces-
sible to authorized hospital staff members in the hospitdtng.
Similar constraints apply to other confidential or secusipsitive
information.

However, the closed nature of information systems contgini
security sensitive information poses restrictions on #s: tfor ex-
ample, making particular hospital data (partially) acit@esn elec-
tronic format could allow researchers (e.g., doctors oidgiists) to
obtain valuable information on the occurrence of certagedses
in particular geographical areas, or would allow, for exben(ret-
rospective) epidemiological studies on much larger dats than
is currently possible. Other examples of information foriebh
dissemination control is useful are music, pictures or m&vand
other intellectual property in electronic format.

Mobile agentsare mobile software programs which can be pro-
grammed by, and aautonomouslyon behalf of, their owner to
achieve some goal [7]. In contrast to client-server programo-
bile agents can migrate to the location where the data res#tel
search the available data locally there. Often cited beneffiising
mobile agents are decreased network usage, as data doesvaot h
to be transported over the network before it can be used bg-a pr
gram (agent); decoupling agent execution from home rodesl
spreading the computational nodes over multiple machiimepar-
ticular when submitting multiple agents in parallel. Anatheason
for using mobile agents instead of client-server technglegthat
data owners can keep control over their information whiis kie-
ing searched by a mobile agent on their own machine; only when
selected data is being exported (e.g., through a commiorecat
channel) out of the content provider's control, does daterifilg,
dissemination protection or payment issues come into plinally,
mobile agents offeflexibility in the way in which content is being
searched, as compared to client-server technologies.

Often, client-server architectures for content retriessd a query
interface at the server side, which provides a special daeguage
(e.g., SQL) in order to find data matching certain criteriawedver,
query languages are not very flexible with regard to matchiitg-
ria and with regard to the data type (e.g., text) for whicly e de-
signed, and may be unsuitable or overly specialized iniceafzpli-
cation domains such as for matching DNA sequence data [83. Th

'E.g., auser can launch an agent into the network prior todirogr
a plane, shut down the laptop, and collect the agent witlegslts
after landing.

means that, in certain applications, it may be hard to selat
using a query interface in a precise enough manner. Corratctm
ing is of particular importance in situations in which costdéor
confidentiality risks play a significant role. For examplepra-
gram that attempts to calculate the evolutionary distamtesden

[9], but few agent systems to date have provided generaplicp
ble application-level security mechanisms. The Mansioagigm,
and its confinement mechanism as explained in this papsritii
gap.
Agent confinement is designed as an integral part of the Man-

a template DNA sequence and a sequence stored in a remote dataion system [10], which aims to provide a clear paradigm for d
base, requires the full DNA sequence from the data base te@ mak signing distributed, secure mobile agent applicationsat@at can

its comparison. At most, a query interface or index can be use
to pre-select DNA sequence files, but after that the file haseto
shipped to the client for comparison. At that time, it leagestrol

of the data owner, and either the data needs to be purchasid, o
has to be marked in some way to avoid unwarranted disseminati
by the client (note that watermarking is not likely to be aqgible

be placed in the Mansion system in so-caltedmg without re-
quiring any central control; if this content is security siine, it
can be placed in a room specially marked (by its creator) as co
taining sensitive content. In such a room, agents are atiwaiip
confined by the Mansion middleware to avoid export of informa
tion from this room except through a single, data owner pted;

to DNA sequence data) in the case where the data file is consid-data export mechanism. The Mansion paradigm, its middiewar

ered propriatory. However, of this pre-selected data, lleattmay
actually need only a subset that matches its query (e.gsethef
sequences which lie within a bounded evolutionary distdram
the template DNA sequence), as a result of which the clietatinod
too many data items.

Mobile agents provide an alternative. Mobile agents cancbea
through (potentially large) data sets locally, avoiding thansfer
of large data sets over the network and allowing fully cusreah
search on raw data. In this case, the client purchases (s sig
non disclosure contract for) only the data which actuallyetadgts
requirements, based on fully client-customized searcHamex-
ample, DNA sequences. Other examples of applications ictwhi
customized search is useful are described in Section 4.

This paper proposes a modeipbile agent confinemenwhich
allows (authorized) users to search for information in ateritial
or privacy-sensitive remote data collections, withoutagting a
local copy of this data. After selecting a set of data iterppliaa-
tion and data specific filtering algorithms implemented tey diata
owner can be applied to the data, to determine which, and at wh
format and under which conditions, data can be exported flam
data owner’'s machine to the agent’s owner.

The idea of using mobile agent confinement to protect intelle
tual property is not new. In [8], Belmon and Yee describe aehod
where agents can search data locally on machines owned by the
tellectual property holder, and where agent owners payhodata
they transmit back home. However, their paper is concetndl
provides no concrete implementation details; in additibair pro-
posal does not cater for data filtering at the server sidegaad not
prevent covert channels. Instead, the authors focus onamee
ical model where the agent pays a charge per bit (or byte)rdepe
ing on the value of the data which has thusfar been inspegtétkb
agent, and covert channels are treated only by chargingéarpo-
tential use. This model, therefore, cannot be used for egpdins
in which information leakage must be completely preventéd.
contrast, this paper proposes a general framework, usghiaub
tiple applications, where agents can be confined prior tessing
sensitive data on a server machine, and application (ara) sioé¢-
cific filters can be applied to the data before it is transmitiack
to an agent’s owner. An implementation for secure confineragen
mobile agents which prevents data leakage through coventnets
is presented in Section 2.

Most mobile agent research so far has focussed on agergrtgyst
programming, rather than on how to provide generally applie,
scalable infrastructures that support applications whegmobile
agents. In particular, there does not exist a clear modelidelyw
deployed infrastructure in which mobile agents can be laadc
to find information, and to which information can be added in a
straightforward way. Much research has been done on piagect
infrastructure and machines against possibly hostile la@gents

and the implementation of its confinement mechanism is destr
in section 2.

For the confinement model to work, agent mobility is a prereq-
uisite: the security provided by confinement cannot gehelsd
obtained using traditional client-server technologielse Mansion
middleware system contains the necessary mechanismsacenf
agent migration and confinement securely. Agent confinenisent
part of the conceptual model of Mansion, and can be used in any
application built using Mansion.

This paper describes the implementation of mobile agent con
finement in Mansion. Using confiment, agents can inspect temo
data collections in a controlled way, such that agents cintake
information with them (to return to their owner) when thisais
lowed by a policy defined by the owner of the data collectiogc-S
tion 2 describes the Mansion framework and its implemeoati
Section 3 introduces the notion of confined rooms. SectioR 4 i
lustrates the potential of the framework in a humber of déffe
application domains. Section 5 compares our approach &rth
reported in the literature. Section 6 discusses the reanttsden-
tifies areas for future research.

2. MANSION PROGRAMMING PARADIGM
AND ARCHITECTURE

Mansion [10] is a mobile agent system which allows agents to
roam through a world in which data is stored in objects. Mamsi
offers an application programming paradigm based on themot
of hyperlinked roomswhich contain the abovementioned objects
and which can be visited by agents so that they can searahgttro
the content of the room locally. Each room contains hypkslito
other rooms, which agents must use to migrate to another.rédm
objects and hyperlinks are annotated using sets of atriaiue
strings, so that agents can find their way in the system inrorde
to find information that may be interesting to them. In adufiti
agents can see each other in a room to meet each other there, so
they can communicate with each other to exchange informatio
order to speed up their search for suitable rooms and comterd
do business with each other directly.

Applications can be designed with specific properties. dpiff
ent applications run as separate worlds, where each wonigics
a (potentially large) set of hyperlinked rooms. The worldnew
can define rules on how the rooms in a world may be hyperlinked
in order to impose structure on the world. For example, aavorl
may consist of a singlevorld entry roomwhich contains hyper-

2Superficially, a room is comparable to a web site, in that mom
can be created dynamically and without requiring centratra,
and in that content can be placed in those rooms without aentr
control as well. However, the web does not support mobiletge
and Mansion’s internal design is completely different friba web.

a reference monitor, resource manager, communicationsgean
v and object broker for agents. The Mansion architectureds/ahn

‘ fig. 1; details are elaborated upon in the remainder of tliae
| @ =~ Jail—

“Agent - IPC
proces%/channeF

2.1 Jail-Based Protection

For security reasons, we run all agents and objects in agrote
tion system called a jail [11]. All system calls of a jailedopr
cess (e.g., an agent) drgerceptedby a jailer process, which en-
forces a policy that confines the jailed process and prevbato-

T T ! ject cal system from being harmed. The jailer implements the mech
. Mansion : ocatior nisms needed to avoid that an agent can, for example, aduess t
| rr:gjgéi\évare ! user’s files or set up a connection to a process outside thsibtan
L,,p ,,,,,,,,, | system. Thept r ace system call, available on almost all UNIX
Host 1 T systems, provides the basic functionality needed to imetgrthe
jailer. By using ptrace, we avoid that the system requiresiging

¢ N Network) ¢ the underlying operating system (which would hinder wideag
BN deployment), and achieve portability to some degree. &ail-
ing systems that used ptrace were vulnerable to certaincaodi-

Figure 1. The Mansion architecture. An agent and middle- tions which would allow processes executing in them to byypas
ware components required for running Mansion are shown. jailer’s security policy [12]. Our jailing system extends this ear-
All middleware components (including agents and objects)r lier work by using a novel approach to protect the systemresgai
implemented as separate processes (dashed boxes). Agents these race conditions. Further details on the jailer's itecture
and objects are executed as separate jailed processes (s@d)t and implementation can be found in [11].

to avoid interference or information leakage. A room (dash- An important reason for using jailing is that it is languagein
dotted box) is composed of a Room Monitor Object (RMO) and tra|, as it works at the system call interface; even for inteted
the objects in that room. Agents invoke Mansion API meth- languages like Java, Perl and Python, system calls are éméuzt
ods and objects using RPC calls to the Mansion middleware gutcome of any operation which interacts with the outsidelavo
process, which acts as a reference monitor for all invocatits (e.g., file or network access operations). In addition, dpisroach

made by an agent and ensures that agents cannot access any makes it possible to use binary agents and objects compitea f
objects outside their current room. A room can be physically C or C++ code in our system. In addition, an interpreted atjet

distributed over multiple processes under single adminisa- makes use of native libraries (which could be a means forgeata
tive control, possibly running on multiple machines. The pah to escape its language-based protection mechanism) camden
that a Single invocation on an ObjeCt (here, the RMO) followss the same Security Constraints as other agentsy by runrn'mg ¢h)_
shown (dotted arrow); the marshalled reply of the object imo- gether with their interpreter) as a process inside a jail.

cation takes the same route back. Resource control mechanisms were also added to our jajlsig s

tem to avoid an agent consuming a host’s resources (suchlds CP
time or memory). By controlling resource usage and by angidi
that an agent can read global system state (e.g., execirtien or
memory usage of other agent processes running on the same ma-
chine), we have a handle to avoid most if not all covert chinne
each control their own sets of rooms and retain full contvairahe which can be used by a malicious agent to export |nf0rmamn t
another process on the same or another machine. By disatjowi

content of the (objects in their) rooms, agents to use resources above a certain treshold, and thpwisa
Objects can be one of a set of generic object provided as part. 9 !

of the Mansion system (e.g., a File Container object usedtfor ing agents to make system calls from which they can deriveroth
ing files), but an application (world) designer can add acit agents’ resource usage, it becomes very hard if not impestab

L e) o transport information from one agent to another, even whese
application-specific objects to the system. A room is immatad - . L
; .) ; . agents are running on the same machine. To eliminate cdvamt c
as an object (the Room Monitor Object (RMO)), which essdtia Y) U
. . . nels, all agent processes must be jailed, as is the case isitf&n
functions as a registry for all the content of the room; ageme ; . X
.) , Preventing covert (as well as direct) channels betweentadggen
automatically connected to their current room's RMO (antyon . SN))
.) . important when building a system intended to confine prazss
their current room’s RMO) when they are started up by the teidd . - . . Lo
)) . . h . in order to protect against unwarranted information diseation.
ware; agents invoke this object when they request infoond#.g.,

query attribute-value sets) about the content of the rooteragent For this use, all output channels shoulq be preyented, ot
L - . most obvious ones such as exporting information throughesha
communication also takes place through the Mansion midatiew

. . files, TCP connections or interprocess communicétidime Man-
process. The middleware process may connect to a middleware . ™. .~ . o A
sion jailing system was designed specifically to avoid infation

process that may be in a different administrative domaipedd-
ing on where the peer agent runs, in order to properly handle a 3An unjailed process can, for example, easily find out infdiama
communication request. about resource usage of a jailed agent by inspecting the f&o

Mansion comes with a specific Application Programming ter Vic€ in Linu|>_<. Accessinfg /pr?c is fofrbidden by the jati)laeﬁr’_efdul';
face (API). Using this API, agents can interact with theirrldp security policy, except for a few safe, necessary subdirest o

- . . /proc.
for example to communicate with other agents or to invoke ob- “Even direct communication channels are not considered well

jects, but they cannot communicate directly with programiside most existing jailing systems, which are generally notgtesil for
the world. Mansion is language neutral: it provides a middie preventing information flow between jailed processes. Kare
program which runs on every machine in the world, which asts a ple, most jailing systems allow the use of certain IPC relatestem

links to all rooms in the world (forming a a tree like struayror

all rooms in a world may be allowed to contain hyperlinks tg an
other room in the world. However, the rooms in a world can be de
ployed autonomously by different administrative authesitwhich

leakage between jails. Our jailing system is, to our knogéedhe
first to attempt a complete coverage of covert channels (dsawe
direct channels) which prevents information leakage betwgo-
cesses that run in different jails.

We believe that our jail design goes a long way to provide a-pra
tical, sound solution against information leakage throaghert
channels. The jailer has been implemented as a user-mogapro
on Linux (no changes to standard Linux are required to rusyke
tem). We have tested several nontrivial stand-alone anct ge-
grams, including Java programs executing in a JVM, whicHdcou
run without any problems inside a jail. Execution overheasl be-
tween 10% and 200%, the latter for a prograant(a Java build
environment) which makes an excessive number of file systéem r
lated system calls. The overhead imposed by jailing depends
the number and type of system calls made by the jailed pragram
Differences in overhead for different system calls are edusy
the way in which the system calls (and their arguments) habe t
processed by the jailer program, and are primarily causethéy
mechanism used to prevent race conditions that could otbeai
low processes to bypass the jailer’s security mechanis@\s1fi].
Based on an evaluation of performance data, most agentgsnsgr

may be denied by it when appropriate.

Obijects run as processes which are managed by a trusted objec
server process (see fig. 1), which may run on a different machi
than the Mansion middleware. Each object process contajes-a
erated skeleton interface and an implementation writte@-.
Objects can only be invoked by agents via the Mansion middle-
ware. To be able to invoke methods on an object, an agent must
first bind to the object using a Mansion API method. Binding con-
nects an agent to an object so that it can be invoked usingba stu
in the agent’'s address space. The Mansion middleware @&ensp
ently forwards invocations to the object server where thgaib
resides. Agents are compiled with a (generated) stub fdr ebe
ject type they may access in a world. Currently, only C and C++
stubs have been implemented, but it is straightforward teegge
stubs for a different language, e.g., Java. Object intesface ap-
plication (world) specific and stubs are generated from guage-
independent IDL and provided as part of an agent programming
library provided by the world designer. Agents invoke objeeth-
ods using RPC calls over the same connection to the middéewar
that is also used for invoking Mansion API calls. Agents abd o
jects are jailed for protection reasons (see fig. 1). Altlioalgject

are expected to perform with an overhead between 10% and 50%,implementations are generally trusted, jailing avoidshedbili-

which we consider acceptable in relation to the flexibilihdase-
curity achieved.

2.2 Mansion API Implementation

A fully closed confinement system is only usable if suppletaeén
by an API whichmaybe used by agents, which allows the agent
do useful things in a controlled way. Mansion comes with ah AP
which allows agents to do useful things in a Mansion worldeAtg
can invoke methods on the Mansion API by making RPC calls over
a dedicated socket connection set up between their jail hed t
Mansion middleware program at agent startup fimagents are
started up as jailed processes by the Mansion middlewacegso
and their life cycle (e.g., killing and suspending the ay&also
managed by this middleware process.

Agents can only interact with the outside world using Mansio
API calls. The Mansion middleware implements the API, ard ac
as areference monitowith regard to the agent’s invocations on this
API. An agent cannot connect to the RMO or to objects in anmothe
room than the one in which it currently resides. Agents cadiro
rectly set up (TCP or UDP) connections to processes outhigle t
system; the jailing system’s policy denies the system cadlses-
sary to set up such connections. Furthermore, the jailistesy
pre-allocates a private directory on the local file systenréad-
write access by the agent, which is not shared with any otteer p
cess and which is cleared when the agent migrates to another, r
this way, export of information through the local file systenpre-
vented. Agents can set up connections to other agents thraug
Mansion API method, depending on authorization checks rbgde
the middleware. Several other APl methods exist, which ate o
side the scope of this paper; however, all methods are apately
checked at the time of invocation by the Mansion middlewang,

calls which make use of user defined tokens for access cottrol
agents pre-agree on such tokens, they can easily exchdngadn
tion via such IPC channels, even if they are executed in ceteiyl
unrelated jails. Our jailer does not prevent IPC channeyeshut
verifies that an IPC token is not already in use and prevergstag
in different jails to set up IPC channels to each other usirgg p
agreed IPC tokens.

5The TCP port that the agent may set up a connection to is spetcifi
as a commandline argument when starting up the agent, and th
agent’s jailer is configured at startup time to allow the aderset
up a connection to this port.

ties in the object’s code from exposing the local maching. (éle
system) to attacks by an agent.

2.3 Secure Agent Migration

Agents are shipped into the Mansion system using an Agent
Container. An AC is a simple, cryptographically protectpdr-
agent migratable file system for storing the agent’s codedatal.
The AC’ssegmentgfiles) can be either persistent (i.e., immutable
and not removable) or transient (mutable and removablejorBe
migrating an agent, its AC is signed, and a secure auditigrait-
tablished by incrementally sigining all changes to the A&tletime
it migrates [10]. The agent’s owner signs the first signaafrine
AC'’s content (including its code and initial data segmehtfpre it
is shipped into the world. This sighature functions for autiicat-
ing the agent when it is received by a Mansion middlewaregssc
before starting it up. A secure handoff protocol (over a ralijtau-
thenticated SSL channel) exists for protecting the agewidt trail
against tampering.

Each object has an Access Control List (ACL), which deteasin
which methods a particular agent may invoke based on thet'agen
authentication. A default entry may exist for unknown ageiihe
RMO’s ACL determines if an agent may enter a room or not.

An important property of agent migration in Mansion is that
agents are restarted completely when they follow a hyderéwen
if the agent can access the target room from the machine where
it was already running. To retain knowledge of what its cotapu
tional state is, an agent must write its found data and inapogarts
of its internal state to its AC prior to following a hyperlinkltility
functions are provided by Mansion which can be used to weige r
ular files to the AC. This simplifies 'self-serialization’ that, for
example, an agent can use memory-mapped files to store proces
state prior to migration, which then can be straightforiactpied
to the agent’s AC and recovered and remapped (by the ageert) af
migration. When an agent follows a hyperlink, the agenttscpss
is killed and its AC is signed and sent over to a middlewaregse
where the target room is accessible from. After the agenCsiA
verified and authorized, and after it is restarted by thatieigare,
it can read its data segments and recover how far it got iresicty

dts task. This type of migration is calledeak migrationin contrast

to strong migration, in which the system takes care of raimtt-
ing the agent at exactly the same point in its thread of ei@tais

it was before migration [13].
Several issues make it hard to implement strong migratidh-wi ‘ P A I
out specialized language or runtime support, in particulben perink o o E—
moving agents to a different type of machine. Although sohst pamte | yperio
for strong code mobility were proposed in operating systgim§ Confined Room
in modified (Java) virtual machines [15], and by using a codes-
lation, preprocessing or (byte)code rewriting approadh 17, 18,
19], none of these have reached significant deployment. fAll o
these approaches also suffer from one significant drawbaaa
when strong mobility is implemented for a specific languagem
erating system, such a solution is inherently not portabletiher
languages or operating systems. Instead, by choosing wigg-m
tion, Mansion allows for agents written in different (irpeeted)
languages, and agents compiled for different platformisetshipped
as alternative implementations within a single agent dnatasuch
that a platform that receives an agent can select an impl=iem
which is appropriate for this platfofin Thus, even binary agents
based on, for example, legacy code written in C or Fortranbean
used, even when using Mansion in a heterogenous environment
However, the most important reason for using weak migration
in Mansion is that, this way, an agent forgets everythingdtrobt
write to its agent container when it follows a hyperlink: axn
ing of an agent’s execution state remains after migratioragent
cannot export any information by means of keeping it in mgmor
the only way to export information from a room is by sending it
over a communication channel to another agent or by writireg t
information to its AC. This is crucial to the implementatiofthe
confinement model, for reasons explained later in this paper

AgentB Hyperlink
—= tosome

other room

Exit Room

Figure 2: An example of a confined room in Mansion. Agent
Ais in a confined room and communicates its findings with the
Guardian Agent (GA). Findings can come from objects or other
agents in the confined room (not shown). Agent B is in an exit
room and asks the GA for its findings from the confined room.

hosts the agent that is in this robnehecks this property, and if the
confinement property is set, it confines the agent at the tiaeitt
enters the room: the agent can now only access and exchange in
formation within the room, but not with the outside world. @h

the agent leaves the confined room, it is automaticallyesaxp in

a speciakxit room without any recollection of what it did or saw

in the confined room (see fig. 2).

To export information (possibly filtered by the content owne
from a confined room, a speci@luardian Agent (GAjs placed in
the room by the content owner. The GA is marked as such using a
special attribute-value pair (see section 2) so that it esfobnd by
agents in the room. Only the GA is allowed to communicate with
agents outside the room, and it acts as a gateway to the watrld o
side. Agents can export information by providing this imf@tion
to the GA,; after leaving the confined room, the agent can conta
the GA from the exit room to obtain the information it provitde
3. CONFINED ROOMS (after GA specific filtering) from the GA. This is shown in fig. 2

A confined roonis a regular room in all respects, except that . As the agent is now unconfin.ed, it can store t.he information in
agents in a confined room cannot communicate with the wortid ou its AC and t_ransport it back to,'ts owner. Data in thg AC can be
side the confined room. In amconfinedoom, agents can set up encrypted W't.h the agent owner's public key to protect infroeing
connections to other agents anywhere in the Mansion wotltl, b _rt_aadable du_rmg agent transport or on the remainder of thatag
this is not possible in a confined room. In addition, agenta in itinerary. This GA can be programmed by the content ownenio d

confined room cannot change, or write any data to, their agent any kir.1d. of filtering on thg dgta or ind.ices proyided by an agen
tainer. As a consequence, an agent cannot export any infiorma it. As it is an agent, its filtering alg(_)rlthm is h|_g_h|y custarable
from a confined room. Within a confined room, agents can irtspec Eﬁ m,\z/latch Fhe cqg(tjelnt in the r?gm, without requiring any clsrng
all content of the objects in that room, and they can comnaieic ?: ansion |m' ew?re Sys m tai tient &t
with any other agent in that room. The idea is that agents¢hns or example, a confined room may contain patient recordsto

inspect, and search in full, any security sensitive conteatcon- |nha file contaln?'r é)bject.. Files .have Iocilly un'qlﬁle ”a”.“m' ha
fined room. As agents (and the room and its objects) run under W eg_an _agenft Inds an |nteres_tgrl19_r%(_:or . (e.g.a_t e patasia
control of a Mansion middleware system which is deployed and CoMPination of symptoms possibly indicating a disease -

trusted by the content owner, it is safe to place any contettid searcher is interested in), it can pass the file name to thg GA
room ' which can replace the patient's name or (personal) ider(sfigvith

Confinement is a property of a room, not of a Mansion appli- a pseudonym, or blank out certain information. A new (ranpgom
cation (world) as a whole: any room can be marked as a confined identifier can be associated with each datum, as an ideruffibe
room at the time of its creation; other rooms in the world aoé n datum for later use which can only b? associated with thedzal .
influenced by this room’s confinement. Thus, the confined room :Em by the data qwn(;ar.dFtroTl the extlrt] r?(_)tm, the agent can Oat?m
is a security mechanism which is usable in any applicatioarby the (”OW. anonymize) data files so that its owner can II’?SF)K-.‘;C
room owner. In order to achieve confinement, the creator ea n information. _In addition, a phone number of the treatingsitipn
room can simply mark it as a confined room when it creates the ob may be provided to the agent by the GA, so that the researaher ¢

ject that implements the room (see fig. 1). The middlewarekwhi contact the physician to ask for more information or perorsso
use the information, e.g., for setting up a trial or for a jpedtion.

5Note that this allows for execution of Java agents under anoap

7
priate Java security policy on those machines where aggitimple- An agent can only be in one room at a time in Mansion, and can

mentation does not exist. However, note that the standamiska (gnly access objects within this room

curity model does not directly or automatically provide tewion The Mansion middleware has been implemented by us and can be
against covert channels, and cannot prevent informatiakalge used for any world; only agents and objects may have to beedap
from occurring in many cases, e.g., when native librariesbaing to the requirements of a specific Mansion application.

used. Also, resource protection mechanisms are missingd¢ro- %It is better to pass a reference to the GA than the actual fle, a
rent JVMs [20]. Therefore, this approach for executing Jayents an agent may hide information in a data file, which is not possi
in the absence of jailing should not be used for executingiaga ble when a filename is passed to the GA. A file container object

a confined room. generally provides read-only access to files.

Note that in the exit room, the agent has no direct accesetddta
in the confined room, nor does it have any recollection of what
did in the confined room; therefore, it is impossible for aerag
to obtain any information from from the confined room except b
asking the GA for this information.

4. USAGE EXAMPLES

Above we exemplified the use of a confined room with patient
records. This section describes some additional examléseo
use of confined rooms. We are currently working on a world with
biological data, which uses the existing Mansion middleniar
frastructure, in which we created some confined rooms agintai
propriatory biological (sequence) data owned by a ficticrah-
pany. Obtaining DNA or RNA sequences or protein structure in
formation is an expensive operation, and such informatiag be
considered propriatory or may be only available for saleweier,
before some researcher considers obtaining sequenceodatéeke
or under a non disclosure contract, it has to be determingusif
data matches the researcher’s criteria. Many sequencehimgtc
algorithms exists, many of those experimental in naturee ifi+
plementation of this application allows agents, with costable
algorithms for sequence comparison, to search for DNA sempse
matching a template DNA sequence in a confined room. Poligntia
interesting sequence files are passed (by name) to the GAykand

tained from the GA when the agent leaves the confined room. The

GA then passes URESto the agent for each matching file; this
URL can then be used by the agent’s owner to fetch the data file
either after payment or using a password obtained from dieear
(off-line) registration procedure, after the agent re¢akn

An application which has been described before is for multi-
media databases or for image retrieval, where agents cachsea
through images remotely to find images matching some sample i

specified policies to data before it leaves the confined raftrthat
time, payment schemes, watermarking, or legal contraititbate

to be applied. Such contracts or watermarking are essigntial
thogonal to our solution and can (and generally should) Iptieg

in addition to any confinement scheme to improve end-syseem s
curity. However, as data selection by mobile agents runoidgr
confinement is much more fine-grained and much more customiz-
able to a client's needs, we expect that the willingness fithb
end-users (clients) and data providers to agree on targedéstri-
bution contracts or payment for the found data is likelly éouch
larger than in systems where the client has incomplete alomer
selecting information, as this implies that larger and Esitable
data sets are returned. Also, the risk of unwarranted disseion

of content by a client is much less when only a few items are ex-
ported than when a larger and less specific subset of sensitiv
expensive data is exported. Because of this reduced ristrfac
larger amount of security sensitive content or intellelcpwaperty
may become available to the general public or an authorizksies

of the publid¢!, where this content would not be likely to become
fully accessible using traditional client-server tectugibs?

5. RELATED WORK

A number of mobile agent systems have been described in the
literature. Telescript [22] was the first commercial mokilgent
system, and pioneered most of the concepts common to mobile
agent systems. With the advent of Java at the end of the 1990s,
' a large number of Java-based mobile agent systems wergfuilt

These systems are largely dependent on the security arfdrpiat
independence provided by Java (e.g., [23, 24, 25]). Onlyesfes-
tems support heterogenous agents. Notable examples agebt#\
[26], Ara [27], TACOMA [28], and AgentScape [29]. No mobile
agent system to date uses jailing to protect the system stgam

age or thumbnail [21, 8]. Here, most emphasis goes to gains in pj, agents.

efficiency due to decreasing network load and spreading atanp
tional load over the machines where the data resides [2hhudh
security advantages have also been described. Howevexxitite
ing literature does not provide a clear model with which eont
providers can place arbitrary content on network nodes asdk m
this content as being security sensitive such that setectwfine-
ment can be applied. More than that, existing models usukally
not distinguish between logical containers of contente(li@oms)
and the physical infrastructure (network nodes, machjmesause
most mobile agent systems do not provide a clear separagion b
tween the logical level and the physical level, they oftemdbpro-

In the existing literature, not many systems exist that use m
bile agents, or mobile code, for confinement in a similar way t
what was described in this paper. Belmon and Yee [8] are clos-
est in nature, but they focus on an economic model for billing
users for obtained data in commercial applications, ratiem on
application-specific filtering of data based on privacy dreotse-
curity constraints. Roth, Pinsdorf and Peters [21] alschioupon
security advantages of using mobile agents in an applicato
plemented in the SeMoA framework [30]. However, the system
described in their paper is limited to searching digitalgesusing
mobile agents.

vide a clear view to the programmers and users on how and where gqyarg] system call interception based jailing systemst ¢34,

to place content, and how agents can find this content. Afso, t
means to export information (e.g., using watermarking oough
a payment scheme) is often hardwired to the described apiplis
and systems, so that the described solutions lack gernyeratit
stead, using the Guardian Agent combined with the logicaleho
of confined rooms in a Mansion world, our confinement model al-
lows for using the Mansion infrastructure to use confinenfent
any application, and to use completely customizeable diéa.-fi
ing or export-time data adaptation (e.g., watermarkingyayment
schemes as required by the content owner.

Note that, in itself, confined rooms do not solve the problem
of content redistribution; it merely allows for applicatispecific
filtering of content prior to obtaining it, and for applyingqgvider

\We currently use web URLs to store the data files for simplic-
ity. Future implementations may store the information iatpcted
rooms in the Mansion world, from which only pre-registergerats
authenticated as representing the obtainer of the fileslzmmahe
information.

32, 33, 34, 35, 36]. Some of these depend on modificationseto th
operating system, which has obvious deployment drawbamks f
using such jailing systems in large-scale distributedesyst Most
jailing systems are intended to protect the operating sy$tem
tampering by untrusted programs. However, most jailindesys
are not designed to prevent leakage of information from ane p
cess to another, in particular when those processes aretegdny

World and room access may be restricted to agents being owned
by doctors or biological researchers, by having agentsgpiately
authenticated and co-signed (or resigned) at world ergréinee.
This is possible in Mansion; details are outside the scopihief
paper.

12E g., digital libraries generally only make abstracts gfga or
books available to the public, in the hope that this provisies
ficient information for the user to decide to buy such a book or
paper. Confinement allows users to do full-text search ompeoim
son without relying on abstracts or content owner-provisieairch
engines to decide to buy a book (or, conceivably, music ondefo

the same user. No system call interception based systentdo da
has covered all avenues (e.g., using the semantics of satheetP
lated system calls) for transporting information from omegess

to another, and protecting against information flow throaghert
channels is generally not treated at all.

Much work has been done on adapting Java to the needs of mo-
bile agents, to making Java more secure, and to adding @sour
management to Java [37, 20, 38]. Most of this work requirasigh
ing the JVM, which limits deployment of the described sauns
on a large scale. Java-specific solutions limit applicabdf those
solutions for many applications, such as for mobile ageoisain-
ing legacy code. No Java system to date deals with prevenfion
information leakage from one Java program (or thread) tahemo
directly.

6. DISCUSSION

This paper describes an approach for building secure fligéd
systems using the concept of confined mobile agents, andrdemo
strated this approach in the context of the Mansion mobikntag
system. The Mansion system provides the concept of a confined
room, in which agents are automatically confined such that in
formation flow from the room is controlled by a trusted guardi
agent, which enforces an information flow policy defined by th
room’s owner.

Agent confinement allows for flexible searching through data
collections with confidential or classified data or intelled prop-
erty while limiting the capabilities of a user to obtain infoation
from these data collections. As agents execute locallyjrifoe-
mation never leaves its host, except when explicitly alidg the
confinement policy defined by the data owner. This makes bate t
the data owner stays in control over where or to whom his or her
data is exported. Other than using, for example, watermgykiur
system poses no constraints on the content of the data acitss
mechanism. Rather, it works by using a mechanism wpielients
data flow, rather than detect information leakage after doe fTo
implement agent confinement securely, we designed a jalsg
tem which is specifically intended to prevent informatiomffoom
one jailed process to another.

The examples of using mobile agents as described in thig pape
demonstrate a few important benefits of using mobile agemts (
mobile code) confinement:

e Its algorithms can be customized to search for specific con-
tent of raw data.

e Agents access this data locally where the data resides, and
thus can efficiently access this data, and

e Export of the data is controlled by the room (data) owner
using the Guardian Agent, such that an agent can only export
a limited amount of data or record identifiers from a room,
depending on a policy enforced by the guardian agent.

The combination of these properties demonstrate that enobil
agents are an important complement to existing technaofgie
building distributed systems. Mobile agents allow for yudus-
tomized search of (raw) data in order to select suitable ndstu
which can then be exported from the confined room under con-
ditions set by the data owner.

The Mansion paradigm provides a clear concept for storirg an
managing security sensitive data, the confined room. Cahfine
rooms are marked to contain security sentitive data, and/idre
sion middleware confines agents in a confined room in such a way
that they can only export information from that room throubh

room’s guardian agent. Agents can find a (confined) room by fol
lowing (appropriately annotated) hyperlinks, and seamrhstiit-
able information there. The data filtering mechanism isiapfibn
specific and is fully embedded in the guardian agent’s implem
tation, and can be adapted to the application’s needs byétse d
owner.

For secure applications, careful design of the actual poisas
important. For example, for a medical application whicloal
agents to search through patient records, it is very impoitaat
the format of the internal data is sufficiently structuredttthe
guardian agent can filter it correctly, to avoid that confiddmpa-
tient information is exported accidentally. Such issuestarbe
resolved by an application designer; the Mansion systemiges
the necessary building blocks (such as the Mansion middewa
object server and jailing system, and the confined room qijce
but cannot solve all issues that have to be considered fondn e
application to be secure. Future research is needed tondasit
analyze appropriate protocols for specific applicationshsas sen-
sitive medical data. We are currently working on the desifja o
guardian agent and its protocols in the context of a worldaion
ing genomic data files.

Building a confinement system is not trivial, as its secudéy
pends on secure confinement mechanisms (i.e., a jailer) mrd o
thorough evaluation on whether information from the room ca
be exported through weaknesses in the guardian agenttsigmli
(which are generally application dependent). Howeveremithat
secure confinement mechanisms such as jailing developefurth
and that policy specification and enforcement are givengrogre,
we believe that using confinement of mobile agents or moloitkec
is a feasible approach to achieve increased system seaniya
valueable addition to existing instruments for buildinguse dis-
tributed systems.

Acknowledgements

The authors thank Bruno Crispo and the anonymous reviewers f
useful comments on an earlier version of this papeiam Balogh
and Rutger Hofman are thanked for contributions to thenjgitiys-
tem described in this paper. Stichting NLnet is thanked faritial
support.

7. REFERENCES

[1] S. Vinoski. CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous EnvironmenEEE
Communications Magaziné4(2), February 1997.
M. van Steen; P. Homburg; A.S. Tanenbaum. Globe: A
Wide-Area Distributed SysteniEEE Concurrency
January-March 1999.
B.C. Popescu; M. van Steen; A.S. Tanenbaum. A Security
Architecture for Object-Based Distributed Systefgc.
18th IEEE Annual Computer Security Applications
ConferenceDecember 2002. pp. 161-171.
IBM. Web Services Security (WS-Security). 2002.
http://www-106.ibm.com/
developerworks/webservices/library/ws-secure/.
I. Cox; J. Kilian; T. Leighton; T. Shamoon. Secure Spread
Spectrum Watermarking for MultimedieEEE Transactions
on Image Processing vol. 6, no.,J#ages 1673-1687, 1997.
[6] A.M. Eskicioglu; J. Town; E.J. Delp. Security of Digital
Entertainment Content from Creation to Consumption.
Signal Processing: Image Communication, 18@Hges
237-262, 2003.

(2]

(3]

(4]

(5]

[7]
(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

D. Milojicic; F. Douglis; R. Wheeler, eds. Mobility:
processes, computers and ageASM Press1999.

S.G. Belmon; B.S. Yee. Mobile agents and Intellectual
property protectionRothermel and Hohl, eds. Proc. 2nd Int'l
workshop on Mobile Agents (MA), LNCS 1477, Springer
Verlag pages 172-182, 1998.

G. Vigna (ed.). Mobile Agents and SecurityNCS 1419
1998. Springer-Verlag.

G.J. van 't Noordende; F.M.T. Brazier; A.S. Tanenbaum.
Security in a Mobile Agent Systeriist IEEE Symposium on
Multi-Agent Security and Survivabilit004. Philadelphia,
PA.

G.J. van 't Noordende; A. Balogh; R.F.H. Hofman; F.M.T.
Brazier; A.S. Tanenbaum. A Secure and Portable Jailing
System.Technical Report IR-CS-025, Vrije Universiteit
October 2006.

T. Garfinkel. Traps and Pitfalls: Practical Problems in
System Call Interception Based Security Toélsc.
Symposium on Network and Distributed System Security
(NDSS) 2003. pp. 163-176.

A. Fuggetta; G.P. Picco; G. Vigna. Understanding Code
Mobility. IEEE Transactions on Software Engineering, vol.
24, no. 5 pages 342-361, 1998.

B. Walker; G. Popek; R. English; C. Kline; G. Thiel. The
LOCUS distributed operating systefroc. 9th Symposium
on Operating Systems Principles (SOS#ges 49-70,
November 1983.

N. Suri; J.M. Bradshaw; M.R. Breedy; P.T. Groth; G.AllHi
R. Jeffers. Strong mobility and fine-grained resource @bntr
in NOMADS. Proc. Symposium on Agent Systems and
Applications / Mobile Agents (ASA/MAjages 2-15, 2000.
L. Bettini; R. De Nicola. Translating Strong Mobilityio
Weak Mobility. Proc. 5th International Conference on
Mobile Agents (MA)2001.

A.J. Chakravarti; X. Wang; J.O. Hallstrom; G. Baumgart
Implementation of Strong Mobility for Multi-Threaded
Agents in JavaProc. International Conference on Parallel
Processing (ICPR)2003.

T. Sakamoto; T. Sekiguchi; A. Yonezawa. Bytecode
Transformation for Portable Thread Migration in Ja&kgent
Systems, Mobile Agents, and Applications (LNCS 1,882)
pages 16-28, 2000.

S. Funfrocken. Transparent Migration of Java-BasedilMo
Agents: Capturing and Reestablishing the State of Java
ProgramsProc. 2nd International Workshop on Mobile
Agents (MA)pages 26-37, september 1998.

W. Binder; J.G. Hulaas; A. Villazdn. Portable Resaurc
Control in Java - The J-SEAL2 Approaddroc. 16th. ACM
SIGPLAN Conf. on Object Oriented Programming, Systems,
Languages and Applications (OOPSL.2)01.

V. Roth; U. Pinsdorf; J. Peters. A Distributed Cont&#sed
Search Engine Based on Mobile Coéeoceedings of the
2005 ACM symposium on Applied computing (session:
Agents, interactions, mobility and systems (AIMS)), New
Mexicq pages 66—73, 2005.

J.E. White. Telescript Technology: Mobile Agenighite
paper, General Magic1996.

J. Baumann; F. Hohl; M. Strasser; K. Rothermel. Mole -
Concepts of a Mobile Agent Systeifechnical Report,
Universitat StuttgartAugust 1997.

N. Karnik and A. Tripathi. Security in the Ajanta Mobile

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Agent SystemSoftware - Practice and Experience 31(4)
2001. pp. 301-329.

D. Lange and M. Othima. Mobile Agents with Java: The
Aglet API. World Wide Web 1(3)September 1998.

R.S. Gray; D. Kotz; G. Cybenko; D. Rus. D’Agents:
Security in a Multiple-language, Mobile-agent System.
Mobile Agents and Securit§998. LNCS 1419,
Springer-Verlag pp. 154-187.

H. Peine and T. Stolpmann. The Architecture of the Ara
Platform for Mobile AgentsProc. First Int'l Workshop on
Mobile Agents1997. LNCS 1219, Springer-Verlag.

D. Johansen; R. van Renesse; F.B. Schneider. Operating
systems support for mobile agersh Workshop on Hot
Topics in Operating Systenk995. pp. 42-45.

N.J.E. Wijngaards; B.J. Overeinder; M. van Steen; F.M.
Brazier. Supporting Internet-Scale Multi-Agent Systems.
Data and Knowledge Engineering 41(2-2D02. pp.
229-245.

V. Roth; M. Jalali-Sohi. Concepts and Architecture of a
Security-Centric Mobile Agent Servdproc. 5th
International Symposium on Autonomous Decentralized
Systems (ISADSpage 435, 2001.

N. Provos. Improving Host Security with System Call
Policies.Proc. 12th USENIX Security Symposiulugust
2003. pp. 257-272.

T. Garfinkel; B. Pfaff; M. Rosenblum. Ostia: A Delegagin
Architecture for Secure System Call Interpositiémoc.
ISOC Network and Distributed System Security Symposium
(NDSS) 2004. .

I. Goldberg; D. Wagner; R. Thomas; E.A. Brewer. A Secure
Environment for Untrusted Helper Applications - Confining
the Wily Hacker.Proc. 6th Usenix Security Symposium
1996. San Jose, CA, USA.

K. Jain; R. Sekar. User-Level Infrastructure for Syst€all
Interposition: A Platform for Intrusion detection and
ConfinementlSOC Network and Distributed System
Security Symposium (NDSPO00. pp. 19-34.

T. Shinagawa; K. Kono; T. Masuda. Flexible and Efficient
Sandboxing Based on Fine-Grained Protection Domains.
1ISSS$2002. pp. 172-184.

D.S. Peterson; M. Bishop; R. Pandey. A Flexible
Containment Mechanism for Executing Untrusted Code.
Usenix Security Symposiy2002.

W. Binder and V. Roth. Secure mobile agent systems using
Java: where are we headingoceedings of the 2002 ACM
Symposium on Applied Computji2p02. pp. 115-119.

G. Back; W.C. Hsieh; J. Lepreau. Processes in KaffeOS:
Isolation, Resource Management, and Sharing in Jnee.
4th Symposium on Operating Systems Design and
Implementation (OSDI), San Diego, CAages 333-346,
October 2000.

