
Guarding Security Sensitive Content using Confined Mobile Agents

Guido van ’t Noordende
Vrije Universiteit

De Boelelaan 1081
1081HV Amsterdam

The Netherlands

guido@cs.vu.nl

Frances M.T. Brazier
Vrije Universiteit

De Boelelaan 1081
1081HV Amsterdam

The Netherlands

frances@cs.vu.nl

Andrew S. Tanenbaum
Vrije Universiteit

De Boelelaan 1081
1081HV Amsterdam

The Netherlands

ast@cs.vu.nl

ABSTRACT
Mobile code and mobile agents are generally associated withsecu-
rity vulnerabilities, rather than with increased security. This paper
describes an approach in which mobile agents areconfined,in or-
der to allow content providers to retain control over how their data
is exported while allowing agents to search the full contentof this
data locally. This approach offers increased control and security
compared to the traditional client-server technologies commonly
used for building distributed systems. We describe a new system,
called Mansion, which implements confinement of mobile agents,
and describe a number of applications of the confinement model to
illustrate its potential.

Keywords
Mobile Agents, Confinement, Information Flow Control

1. INTRODUCTION
Current distributed system architectures such as the web, web

services, and distributed object systems [1, 2], are essentially client-
server based. These systems often provide some security mecha-
nisms such as client or user authentication [3, 4], but are weak at
enforcing information flow control policies. As soon as a client
has access to a document or data file, its contents are vulnerable in
that the client can redistribute this information to unauthorized par-
ties. A number of approaches attempt to minimize the risk of such
unwarranted dissemination of security sensitive content.Digital
Rights Management (DRM) [6] is an approach which can prevent
unwarranted content redistribution by using secure hardware on the
client side. However, such hardware may not always be available,
must be authenticated, and may not be fully trusted by the content
provider. Therefore, DRM may not be feasible in all applications.
Some detection mechanisms (such as watermarking [5]) are being
developed which do not depend on secure hardware, but instead al-
low for detection of information leakage once it has occurred by
including information in the data which can be used to detectleak-
age after the fact, and/or provide information leading backto the
principal that leaked this information. However, for certain types
of data, it may be impossible to include such information in the data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

without compromizing usability of this data. In addition, detection
of leakage after the fact may not be enough for some applications.
For example, medical data may contain privacy sensitive informa-
tion that should never be exposed to unauthorized third parties. As a
result, security sensitive data with dissemination constraints is most
often not remotely accessible. For example, medical data isgener-
ally stored in off-line medical information sytems, and only acces-
sible to authorized hospital staff members in the hospital building.
Similar constraints apply to other confidential or securitysensitive
information.

However, the closed nature of information systems containing
security sensitive information poses restrictions on its use: for ex-
ample, making particular hospital data (partially) accessible in elec-
tronic format could allow researchers (e.g., doctors or biologists) to
obtain valuable information on the occurrence of certain diseases
in particular geographical areas, or would allow, for example, (ret-
rospective) epidemiological studies on much larger data sets than
is currently possible. Other examples of information for which
dissemination control is useful are music, pictures or movies, and
other intellectual property in electronic format.

Mobile agentsare mobile software programs which can be pro-
grammed by, and actautonomouslyon behalf of, their owner to
achieve some goal [7]. In contrast to client-server programs, mo-
bile agents can migrate to the location where the data resides, and
search the available data locally there. Often cited benefits of using
mobile agents are decreased network usage, as data does not have
to be transported over the network before it can be used by a pro-
gram (agent); decoupling agent execution from home nodes1; and
spreading the computational nodes over multiple machines -in par-
ticular when submitting multiple agents in parallel. Another reason
for using mobile agents instead of client-server technology, is that
data owners can keep control over their information while itis be-
ing searched by a mobile agent on their own machine; only when
selected data is being exported (e.g., through a communications
channel) out of the content provider’s control, does data filtering,
dissemination protection or payment issues come into play.Finally,
mobile agents offerflexibility in the way in which content is being
searched, as compared to client-server technologies.

Often, client-server architectures for content retrievaluse a query
interface at the server side, which provides a special querylanguage
(e.g., SQL) in order to find data matching certain criteria. However,
query languages are not very flexible with regard to matchingcrite-
ria and with regard to the data type (e.g., text) for which they are de-
signed, and may be unsuitable or overly specialized in certain appli-
cation domains such as for matching DNA sequence data [8]. This

1E.g., a user can launch an agent into the network prior to boarding
a plane, shut down the laptop, and collect the agent with its results
after landing.

means that, in certain applications, it may be hard to selectdata
using a query interface in a precise enough manner. Correct match-
ing is of particular importance in situations in which cost and/or
confidentiality risks play a significant role. For example, apro-
gram that attempts to calculate the evolutionary distance between
a template DNA sequence and a sequence stored in a remote data
base, requires the full DNA sequence from the data base to make
its comparison. At most, a query interface or index can be used
to pre-select DNA sequence files, but after that the file has tobe
shipped to the client for comparison. At that time, it leavescontrol
of the data owner, and either the data needs to be purchased, or it
has to be marked in some way to avoid unwarranted dissemination
by the client (note that watermarking is not likely to be applicable
to DNA sequence data) in the case where the data file is consid-
ered propriatory. However, of this pre-selected data, the client may
actually need only a subset that matches its query (e.g., theset of
sequences which lie within a bounded evolutionary distancefrom
the template DNA sequence), as a result of which the client obtains
too many data items.

Mobile agents provide an alternative. Mobile agents can search
through (potentially large) data sets locally, avoiding the transfer
of large data sets over the network and allowing fully customized
search on raw data. In this case, the client purchases (or signs a
non disclosure contract for) only the data which actually meets its
requirements, based on fully client-customized search on,for ex-
ample, DNA sequences. Other examples of applications in which
customized search is useful are described in Section 4.

This paper proposes a model,mobile agent confinement, which
allows (authorized) users to search for information in confidential
or privacy-sensitive remote data collections, without obtaining a
local copy of this data. After selecting a set of data items, applica-
tion and data specific filtering algorithms implemented by the data
owner can be applied to the data, to determine which, and in what
format and under which conditions, data can be exported fromthe
data owner’s machine to the agent’s owner.

The idea of using mobile agent confinement to protect intellec-
tual property is not new. In [8], Belmon and Yee describe a model
where agents can search data locally on machines owned by thein-
tellectual property holder, and where agent owners pay for the data
they transmit back home. However, their paper is conceptualand
provides no concrete implementation details; in addition,their pro-
posal does not cater for data filtering at the server side, anddoes not
prevent covert channels. Instead, the authors focus on an econom-
ical model where the agent pays a charge per bit (or byte) depend-
ing on the value of the data which has thusfar been inspected by the
agent, and covert channels are treated only by charging for their po-
tential use. This model, therefore, cannot be used for applications
in which information leakage must be completely prevented.In
contrast, this paper proposes a general framework, usable by mul-
tiple applications, where agents can be confined prior to accessing
sensitive data on a server machine, and application (and data) spe-
cific filters can be applied to the data before it is transmitted back
to an agent’s owner. An implementation for secure confinement of
mobile agents which prevents data leakage through covert channels
is presented in Section 2.

Most mobile agent research so far has focussed on agent (system)
programming, rather than on how to provide generally applicable,
scalable infrastructures that support applications whichuse mobile
agents. In particular, there does not exist a clear model or widely
deployed infrastructure in which mobile agents can be launched
to find information, and to which information can be added in a
straightforward way. Much research has been done on protecting
infrastructure and machines against possibly hostile mobile agents

[9], but few agent systems to date have provided generally applica-
ble application-level security mechanisms. The Mansion paradigm,
and its confinement mechanism as explained in this paper, fills this
gap.

Agent confinement is designed as an integral part of the Man-
sion system [10], which aims to provide a clear paradigm for de-
signing distributed, secure mobile agent applications. Content can
be placed in the Mansion system in so-calledrooms2 without re-
quiring any central control; if this content is security sensitive, it
can be placed in a room specially marked (by its creator) as con-
taining sensitive content. In such a room, agents are automatically
confined by the Mansion middleware to avoid export of informa-
tion from this room except through a single, data owner provided,
data export mechanism. The Mansion paradigm, its middleware,
and the implementation of its confinement mechanism is described
in section 2.

For the confinement model to work, agent mobility is a prereq-
uisite: the security provided by confinement cannot generally be
obtained using traditional client-server technologies. The Mansion
middleware system contains the necessary mechanisms to enforce
agent migration and confinement securely. Agent confinementis
part of the conceptual model of Mansion, and can be used in any
application built using Mansion.

This paper describes the implementation of mobile agent con-
finement in Mansion. Using confiment, agents can inspect remote
data collections in a controlled way, such that agents can only take
information with them (to return to their owner) when this isal-
lowed by a policy defined by the owner of the data collection. Sec-
tion 2 describes the Mansion framework and its implementation.
Section 3 introduces the notion of confined rooms. Section 4 il-
lustrates the potential of the framework in a number of different
application domains. Section 5 compares our approach to others
reported in the literature. Section 6 discusses the resultsand iden-
tifies areas for future research.

2. MANSION PROGRAMMING PARADIGM
AND ARCHITECTURE

Mansion [10] is a mobile agent system which allows agents to
roam through a world in which data is stored in objects. Mansion
offers an application programming paradigm based on the notion
of hyperlinked rooms, which contain the abovementioned objects
and which can be visited by agents so that they can search through
the content of the room locally. Each room contains hyperlinks to
other rooms, which agents must use to migrate to another room. All
objects and hyperlinks are annotated using sets of attribute-value
strings, so that agents can find their way in the system in order
to find information that may be interesting to them. In addition,
agents can see each other in a room to meet each other there, so
they can communicate with each other to exchange information in
order to speed up their search for suitable rooms and content, or to
do business with each other directly.

Applications can be designed with specific properties. Differ-
ent applications run as separate worlds, where each world contains
a (potentially large) set of hyperlinked rooms. The world owner
can define rules on how the rooms in a world may be hyperlinked
in order to impose structure on the world. For example, a world
may consist of a singleworld entry roomwhich contains hyper-

2Superficially, a room is comparable to a web site, in that rooms
can be created dynamically and without requiring central control,
and in that content can be placed in those rooms without central
control as well. However, the web does not support mobile agents,
and Mansion’s internal design is completely different fromthe web.

process
Agent

Object

RMO
Jail

Host 1 Host 2

IPC
channels

Network

Object
invocation

Room

Mansion
middleware
process

Object
Server
Process

Figure 1: The Mansion architecture. An agent and middle-
ware components required for running Mansion are shown.
All middleware components (including agents and objects) are
implemented as separate processes (dashed boxes). Agents
and objects are executed as separate jailed processes (see text)
to avoid interference or information leakage. A room (dash-
dotted box) is composed of a Room Monitor Object (RMO) and
the objects in that room. Agents invoke Mansion API meth-
ods and objects using RPC calls to the Mansion middleware
process, which acts as a reference monitor for all invocations
made by an agent and ensures that agents cannot access any
objects outside their current room. A room can be physically
distributed over multiple processes under single administra-
tive control, possibly running on multiple machines. The path
that a single invocation on an object (here, the RMO) followsis
shown (dotted arrow); the marshalled reply of the object invo-
cation takes the same route back.

links to all rooms in the world (forming a a tree like structure), or
all rooms in a world may be allowed to contain hyperlinks to any
other room in the world. However, the rooms in a world can be de-
ployed autonomously by different administrative authorities, which
each control their own sets of rooms and retain full control over the
content of the (objects in their) rooms.

Objects can be one of a set of generic object provided as part
of the Mansion system (e.g., a File Container object used forstor-
ing files), but an application (world) designer can add additional
application-specific objects to the system. A room is implemented
as an object (the Room Monitor Object (RMO)), which essentially
functions as a registry for all the content of the room; agents are
automatically connected to their current room’s RMO (and only
their current room’s RMO) when they are started up by the middle-
ware; agents invoke this object when they request information (e.g.,
query attribute-value sets) about the content of the room. Interagent
communication also takes place through the Mansion middleware
process. The middleware process may connect to a middleware
process that may be in a different administrative domain, depend-
ing on where the peer agent runs, in order to properly handle a
communication request.

Mansion comes with a specific Application Programming Inter-
face (API). Using this API, agents can interact with their world,
for example to communicate with other agents or to invoke ob-
jects, but they cannot communicate directly with programs outside
the world. Mansion is language neutral: it provides a middleware
program which runs on every machine in the world, which acts as

a reference monitor, resource manager, communications manager
and object broker for agents. The Mansion architecture is shown in
fig. 1; details are elaborated upon in the remainder of this section.

2.1 Jail-Based Protection
For security reasons, we run all agents and objects in a protec-

tion system called a jail [11]. All system calls of a jailed pro-
cess (e.g., an agent) areinterceptedby a jailer process, which en-
forces a policy that confines the jailed process and preventsthe lo-
cal system from being harmed. The jailer implements the mecha-
nisms needed to avoid that an agent can, for example, access the
user’s files or set up a connection to a process outside the Mansion
system. Theptrace system call, available on almost all UNIX
systems, provides the basic functionality needed to implement the
jailer. By using ptrace, we avoid that the system requires changing
the underlying operating system (which would hinder widespread
deployment), and achieve portability to some degree. Earlier jail-
ing systems that used ptrace were vulnerable to certain racecondi-
tions which would allow processes executing in them to bypass the
jailer’s security policy [12]. Our jailing system extends on this ear-
lier work by using a novel approach to protect the system against
these race conditions. Further details on the jailer’s architecture
and implementation can be found in [11].

An important reason for using jailing is that it is language neu-
tral, as it works at the system call interface; even for interpreted
languages like Java, Perl and Python, system calls are the eventual
outcome of any operation which interacts with the outside world
(e.g., file or network access operations). In addition, thisapproach
makes it possible to use binary agents and objects compiled from
C or C++ code in our system. In addition, an interpreted agentthat
makes use of native libraries (which could be a means for the agent
to escape its language-based protection mechanism) can rununder
the same security constraints as other agents, by running them (to-
gether with their interpreter) as a process inside a jail.

Resource control mechanisms were also added to our jailing sys-
tem to avoid an agent consuming a host’s resources (such as CPU
time or memory). By controlling resource usage and by avoiding
that an agent can read global system state (e.g., execution times or
memory usage of other agent processes running on the same ma-
chine), we have a handle to avoid most if not all covert channels
which can be used by a malicious agent to export information to
another process on the same or another machine. By disallowing
agents to use resources above a certain treshold, and by disallow-
ing agents to make system calls from which they can derive other
agents’ resource usage, it becomes very hard if not impossible to
transport information from one agent to another, even when these
agents are running on the same machine. To eliminate covert chan-
nels, all agent processes must be jailed, as is the case in Mansion3.

Preventing covert (as well as direct) channels between agents is
important when building a system intended to confine processes
in order to protect against unwarranted information dissemination.
For this use, all output channels should be prevented, not just the
most obvious ones such as exporting information through shared
files, TCP connections or interprocess communication4. The Man-
sion jailing system was designed specifically to avoid information
3An unjailed process can, for example, easily find out information
about resource usage of a jailed agent by inspecting the /proc de-
vice in Linux. Accessing /proc is forbidden by the jailer’s default
security policy, except for a few safe, necessary subdirectories of
/proc.
4Even direct communication channels are not considered wellby
most existing jailing systems, which are generally not designed for
preventing information flow between jailed processes. For exam-
ple, most jailing systems allow the use of certain IPC related system

leakage between jails. Our jailing system is, to our knowledge, the
first to attempt a complete coverage of covert channels (as well as
direct channels) which prevents information leakage between pro-
cesses that run in different jails.

We believe that our jail design goes a long way to provide a prac-
tical, sound solution against information leakage throughcovert
channels. The jailer has been implemented as a user-mode program
on Linux (no changes to standard Linux are required to run thesys-
tem). We have tested several nontrivial stand-alone and agent pro-
grams, including Java programs executing in a JVM, which could
run without any problems inside a jail. Execution overhead lies be-
tween 10% and 200%, the latter for a program (ant, a Java build
environment) which makes an excessive number of file system re-
lated system calls. The overhead imposed by jailing dependson
the number and type of system calls made by the jailed program.
Differences in overhead for different system calls are caused by
the way in which the system calls (and their arguments) have to be
processed by the jailer program, and are primarily caused bythe
mechanism used to prevent race conditions that could otherwise al-
low processes to bypass the jailer’s security mechanisms [12, 11].
Based on an evaluation of performance data, most agent programs
are expected to perform with an overhead between 10% and 50%,
which we consider acceptable in relation to the flexibility and se-
curity achieved.

2.2 Mansion API Implementation
A fully closed confinement system is only usable if supplemented

by an API whichmaybe used by agents, which allows the agent
do useful things in a controlled way. Mansion comes with an API
which allows agents to do useful things in a Mansion world. Agents
can invoke methods on the Mansion API by making RPC calls over
a dedicated socket connection set up between their jail and the
Mansion middleware program at agent startup time5. Agents are
started up as jailed processes by the Mansion middleware process,
and their life cycle (e.g., killing and suspending the agent) is also
managed by this middleware process.

Agents can only interact with the outside world using Mansion
API calls. The Mansion middleware implements the API, and acts
as areference monitorwith regard to the agent’s invocations on this
API. An agent cannot connect to the RMO or to objects in another
room than the one in which it currently resides. Agents cannot di-
rectly set up (TCP or UDP) connections to processes outside the
system; the jailing system’s policy denies the system callsneces-
sary to set up such connections. Furthermore, the jailing system
pre-allocates a private directory on the local file system for read-
write access by the agent, which is not shared with any other pro-
cess and which is cleared when the agent migrates to another room;
this way, export of information through the local file systemis pre-
vented. Agents can set up connections to other agents through a
Mansion API method, depending on authorization checks madeby
the middleware. Several other API methods exist, which are out-
side the scope of this paper; however, all methods are appropriately
checked at the time of invocation by the Mansion middleware,and

calls which make use of user defined tokens for access control. If
agents pre-agree on such tokens, they can easily exchange informa-
tion via such IPC channels, even if they are executed in completely
unrelated jails. Our jailer does not prevent IPC channel usage, but
verifies that an IPC token is not already in use and prevents agents
in different jails to set up IPC channels to each other using pre-
agreed IPC tokens.
5The TCP port that the agent may set up a connection to is specified
as a commandline argument when starting up the agent, and the
agent’s jailer is configured at startup time to allow the agent to set
up a connection to this port.

may be denied by it when appropriate.
Objects run as processes which are managed by a trusted object

server process (see fig. 1), which may run on a different machine
than the Mansion middleware. Each object process contains agen-
erated skeleton interface and an implementation written inC++.
Objects can only be invoked by agents via the Mansion middle-
ware. To be able to invoke methods on an object, an agent must
first bind to the object using a Mansion API method. Binding con-
nects an agent to an object so that it can be invoked using a stub
in the agent’s address space. The Mansion middleware transpar-
ently forwards invocations to the object server where the object
resides. Agents are compiled with a (generated) stub for each ob-
ject type they may access in a world. Currently, only C and C++
stubs have been implemented, but it is straightforward to generate
stubs for a different language, e.g., Java. Object interfaces are ap-
plication (world) specific and stubs are generated from a language-
independent IDL and provided as part of an agent programming
library provided by the world designer. Agents invoke object meth-
ods using RPC calls over the same connection to the middleware
that is also used for invoking Mansion API calls. Agents and ob-
jects are jailed for protection reasons (see fig. 1). Although object
implementations are generally trusted, jailing avoids vulnerabili-
ties in the object’s code from exposing the local machine (e.g., file
system) to attacks by an agent.

2.3 Secure Agent Migration
Agents are shipped into the Mansion system using an Agent

Container. An AC is a simple, cryptographically protected,per-
agent migratable file system for storing the agent’s code anddata.
The AC’ssegments(files) can be either persistent (i.e., immutable
and not removable) or transient (mutable and removable). Before
migrating an agent, its AC is signed, and a secure audit trailis es-
tablished by incrementally sigining all changes to the AC, each time
it migrates [10]. The agent’s owner signs the first signatureof the
AC’s content (including its code and initial data segments)before it
is shipped into the world. This signature functions for authenticat-
ing the agent when it is received by a Mansion middleware process,
before starting it up. A secure handoff protocol (over a mutually au-
thenticated SSL channel) exists for protecting the agent’saudit trail
against tampering.

Each object has an Access Control List (ACL), which determines
which methods a particular agent may invoke based on the agent’s
authentication. A default entry may exist for unknown agents. The
RMO’s ACL determines if an agent may enter a room or not.

An important property of agent migration in Mansion is that
agents are restarted completely when they follow a hyperlink, even
if the agent can access the target room from the machine where
it was already running. To retain knowledge of what its computa-
tional state is, an agent must write its found data and important parts
of its internal state to its AC prior to following a hyperlink. Utility
functions are provided by Mansion which can be used to write reg-
ular files to the AC. This simplifies ’self-serialization’ inthat, for
example, an agent can use memory-mapped files to store process
state prior to migration, which then can be straightforwardly copied
to the agent’s AC and recovered and remapped (by the agent) after
migration. When an agent follows a hyperlink, the agent’s process
is killed and its AC is signed and sent over to a middleware process
where the target room is accessible from. After the agent’s AC is
verified and authorized, and after it is restarted by that middleware,
it can read its data segments and recover how far it got in achieving
its task. This type of migration is calledweak migration, in contrast
to strong migration, in which the system takes care of reinstantiat-
ing the agent at exactly the same point in its thread of execution as

it was before migration [13].
Several issues make it hard to implement strong migration with-

out specialized language or runtime support, in particularwhen
moving agents to a different type of machine. Although solutions
for strong code mobility were proposed in operating systems[14],
in modified (Java) virtual machines [15], and by using a code trans-
lation, preprocessing or (byte)code rewriting approach [16, 17, 18,
19], none of these have reached significant deployment. All of
these approaches also suffer from one significant drawback:even
when strong mobility is implemented for a specific language or op-
erating system, such a solution is inherently not portable to other
languages or operating systems. Instead, by choosing weak migra-
tion, Mansion allows for agents written in different (interpreted)
languages, and agents compiled for different platforms, tobe shipped
as alternative implementations within a single agent container, such
that a platform that receives an agent can select an implementation
which is appropriate for this platform6. Thus, even binary agents
based on, for example, legacy code written in C or Fortran canbe
used, even when using Mansion in a heterogenous environment.

However, the most important reason for using weak migration
in Mansion is that, this way, an agent forgets everything it did not
write to its agent container when it follows a hyperlink: as noth-
ing of an agent’s execution state remains after migration, an agent
cannot export any information by means of keeping it in memory;
the only way to export information from a room is by sending it
over a communication channel to another agent or by writing the
information to its AC. This is crucial to the implementationof the
confinement model, for reasons explained later in this paper.

3. CONFINED ROOMS
A confined roomis a regular room in all respects, except that

agents in a confined room cannot communicate with the world out-
side the confined room. In anunconfinedroom, agents can set up
connections to other agents anywhere in the Mansion world, but
this is not possible in a confined room. In addition, agents ina
confined room cannot change, or write any data to, their agentcon-
tainer. As a consequence, an agent cannot export any information
from a confined room. Within a confined room, agents can inspect
all content of the objects in that room, and they can communicate
with any other agent in that room. The idea is that agents thuscan
inspect, and search in full, any security sensitive contentin a con-
fined room. As agents (and the room and its objects) run under
control of a Mansion middleware system which is deployed and
trusted by the content owner, it is safe to place any content in the
room.

Confinement is a property of a room, not of a Mansion appli-
cation (world) as a whole: any room can be marked as a confined
room at the time of its creation; other rooms in the world are not
influenced by this room’s confinement. Thus, the confined room
is a security mechanism which is usable in any application byany
room owner. In order to achieve confinement, the creator of a new
room can simply mark it as a confined room when it creates the ob-
ject that implements the room (see fig. 1). The middleware which

6Note that this allows for execution of Java agents under an appro-
priate Java security policy on those machines where a jailing imple-
mentation does not exist. However, note that the standard Java se-
curity model does not directly or automatically provide protection
against covert channels, and cannot prevent information leakage
from occurring in many cases, e.g., when native libraries are being
used. Also, resource protection mechanisms are missing from cur-
rent JVMs [20]. Therefore, this approach for executing Javaagents
in the absence of jailing should not be used for executing agents in
a confined room.

Hyperlink from
some
room to
confined room

Confined Room

Guardian
agent hyperlink

Hyperlink
to some
other room

Exit Room

Agent A
Agent B

Figure 2: An example of a confined room in Mansion. Agent
A is in a confined room and communicates its findings with the
Guardian Agent (GA). Findings can come from objects or other
agents in the confined room (not shown). Agent B is in an exit
room and asks the GA for its findings from the confined room.

hosts the agent that is in this room7, checks this property, and if the
confinement property is set, it confines the agent at the time that it
enters the room: the agent can now only access and exchange in-
formation within the room, but not with the outside world. When
the agent leaves the confined room, it is automatically started up in
a specialexit room, without any recollection of what it did or saw
in the confined room (see fig. 2).

To export information (possibly filtered by the content owner)
from a confined room, a specialGuardian Agent (GA)is placed in
the room by the content owner. The GA is marked as such using a
special attribute-value pair (see section 2) so that it can be found by
agents in the room. Only the GA is allowed to communicate with
agents outside the room, and it acts as a gateway to the world out-
side. Agents can export information by providing this information
to the GA; after leaving the confined room, the agent can contact
the GA from the exit room to obtain the information it provided
(after GA specific filtering) from the GA. This is shown in fig. 2.

As the agent is now unconfined, it can store the information in
its AC and transport it back to its owner. Data in the AC can be
encrypted with the agent owner’s public key to protect it from being
readable during agent transport or on the remainder of the agent’s
itinerary. This GA can be programmed by the content owner to do
any kind of filtering on the data or indices provided by an agent to
it. As it is an agent, its filtering algorithm is highly customizable
to match the content in the room, without requiring any changes to
the Mansion middleware system8.

For example, a confined room may contain patient records, stored
in a file container object. Files have locally unique names, and
when an agent finds an interesting record (e.g., the patient has a
combination of symptoms possibly indicating a disease thata re-
searcher is interested in), it can pass the file name to the GA9

which can replace the patient’s name or (personal) identifier(s) with
a pseudonym, or blank out certain information. A new (random)
identifier can be associated with each datum, as an identifierof the
datum for later use which can only be associated with the realda-
tum by the data owner. From the exit room, the agent can obtain
the (now anonymized) data files so that its owner can inspect the
information. In addition, a phone number of the treating physician
may be provided to the agent by the GA, so that the researcher can
contact the physician to ask for more information or permission to
use the information, e.g., for setting up a trial or for a publication.

7An agent can only be in one room at a time in Mansion, and can
only access objects within this room
8The Mansion middleware has been implemented by us and can be
used for any world; only agents and objects may have to be adapted
to the requirements of a specific Mansion application.
9It is better to pass a reference to the GA than the actual file, as
an agent may hide information in a data file, which is not possi-
ble when a filename is passed to the GA. A file container object
generally provides read-only access to files.

Note that in the exit room, the agent has no direct access to the data
in the confined room, nor does it have any recollection of whatit
did in the confined room; therefore, it is impossible for an agent
to obtain any information from from the confined room except by
asking the GA for this information.

4. USAGE EXAMPLES
Above we exemplified the use of a confined room with patient

records. This section describes some additional examples of the
use of confined rooms. We are currently working on a world with
biological data, which uses the existing Mansion middleware in-
frastructure, in which we created some confined rooms containing
propriatory biological (sequence) data owned by a fictionalcom-
pany. Obtaining DNA or RNA sequences or protein structure in-
formation is an expensive operation, and such information may be
considered propriatory or may be only available for sale. However,
before some researcher considers obtaining sequence data for a fee
or under a non disclosure contract, it has to be determined ifthis
data matches the researcher’s criteria. Many sequence matching
algorithms exists, many of those experimental in nature. The im-
plementation of this application allows agents, with customizable
algorithms for sequence comparison, to search for DNA sequences
matching a template DNA sequence in a confined room. Potentially
interesting sequence files are passed (by name) to the GA, andob-
tained from the GA when the agent leaves the confined room. The
GA then passes URLs10 to the agent for each matching file; this
URL can then be used by the agent’s owner to fetch the data file,
either after payment or using a password obtained from an earlier
(off-line) registration procedure, after the agent returned.

An application which has been described before is for multi-
media databases or for image retrieval, where agents can search
through images remotely to find images matching some sample im-
age or thumbnail [21, 8]. Here, most emphasis goes to gains in
efficiency due to decreasing network load and spreading computa-
tional load over the machines where the data resides [21], although
security advantages have also been described. However, theexist-
ing literature does not provide a clear model with which content
providers can place arbitrary content on network nodes and mark
this content as being security sensitive such that selective confine-
ment can be applied. More than that, existing models usuallydo
not distinguish between logical containers of content (like rooms)
and the physical infrastructure (network nodes, machines); because
most mobile agent systems do not provide a clear separation be-
tween the logical level and the physical level, they often donot pro-
vide a clear view to the programmers and users on how and where
to place content, and how agents can find this content. Also, the
means to export information (e.g., using watermarking or through
a payment scheme) is often hardwired to the described applications
and systems, so that the described solutions lack generality. In-
stead, using the Guardian Agent combined with the logical model
of confined rooms in a Mansion world, our confinement model al-
lows for using the Mansion infrastructure to use confinementfor
any application, and to use completely customizeable data filter-
ing or export-time data adaptation (e.g., watermarking) orpayment
schemes as required by the content owner.

Note that, in itself, confined rooms do not solve the problem
of content redistribution; it merely allows for application-specific
filtering of content prior to obtaining it, and for applying provider

10We currently use web URLs to store the data files for simplic-
ity. Future implementations may store the information in protected
rooms in the Mansion world, from which only pre-registered agents
authenticated as representing the obtainer of the files can obtain the
information.

specified policies to data before it leaves the confined room.At that
time, payment schemes, watermarking, or legal contracts still have
to be applied. Such contracts or watermarking are essentially or-
thogonal to our solution and can (and generally should) be applied
in addition to any confinement scheme to improve end-system se-
curity. However, as data selection by mobile agents runningunder
confinement is much more fine-grained and much more customiz-
able to a client’s needs, we expect that the willingness for both
end-users (clients) and data providers to agree on targetedredistri-
bution contracts or payment for the found data is likelly to be much
larger than in systems where the client has incomplete control over
selecting information, as this implies that larger and lesssuitable
data sets are returned. Also, the risk of unwarranted dissemination
of content by a client is much less when only a few items are ex-
ported than when a larger and less specific subset of sensitive or
expensive data is exported. Because of this reduced risk factor, a
larger amount of security sensitive content or intellectual property
may become available to the general public or an authorized subset
of the public11, where this content would not be likely to become
fully accessible using traditional client-server technologies12

5. RELATED WORK
A number of mobile agent systems have been described in the

literature. Telescript [22] was the first commercial mobileagent
system, and pioneered most of the concepts common to mobile
agent systems. With the advent of Java at the end of the 1990s,
a large number of Java-based mobile agent systems were built[7].
These systems are largely dependent on the security and platform
independence provided by Java (e.g., [23, 24, 25]). Only a few sys-
tems support heterogenous agents. Notable examples are D’Agents
[26], Ara [27], TACOMA [28], and AgentScape [29]. No mobile
agent system to date uses jailing to protect the system against mo-
bile agents.

In the existing literature, not many systems exist that use mo-
bile agents, or mobile code, for confinement in a similar way to
what was described in this paper. Belmon and Yee [8] are clos-
est in nature, but they focus on an economic model for billing
users for obtained data in commercial applications, ratherthan on
application-specific filtering of data based on privacy or other se-
curity constraints. Roth, Pinsdorf and Peters [21] also touch upon
security advantages of using mobile agents in an application im-
plemented in the SeMoA framework [30]. However, the system
described in their paper is limited to searching digital images using
mobile agents.

Several system call interception based jailing systems exist [31,
32, 33, 34, 35, 36]. Some of these depend on modifications to the
operating system, which has obvious deployment drawbacks for
using such jailing systems in large-scale distributed systems. Most
jailing systems are intended to protect the operating system from
tampering by untrusted programs. However, most jailing systems
are not designed to prevent leakage of information from one pro-
cess to another, in particular when those processes are executed by

11World and room access may be restricted to agents being owned
by doctors or biological researchers, by having agents appropriately
authenticated and co-signed (or resigned) at world entrance time.
This is possible in Mansion; details are outside the scope ofthis
paper.

12E.g., digital libraries generally only make abstracts of papers or
books available to the public, in the hope that this providessuf-
ficient information for the user to decide to buy such a book or
paper. Confinement allows users to do full-text search or compari-
son without relying on abstracts or content owner-providedsearch
engines to decide to buy a book (or, conceivably, music or a movie).

the same user. No system call interception based system to date
has covered all avenues (e.g., using the semantics of some IPC re-
lated system calls) for transporting information from one process
to another, and protecting against information flow throughcovert
channels is generally not treated at all.

Much work has been done on adapting Java to the needs of mo-
bile agents, to making Java more secure, and to adding resource
management to Java [37, 20, 38]. Most of this work requires chang-
ing the JVM, which limits deployment of the described solutions
on a large scale. Java-specific solutions limit applicability of those
solutions for many applications, such as for mobile agents contain-
ing legacy code. No Java system to date deals with preventionof
information leakage from one Java program (or thread) to another
directly.

6. DISCUSSION
This paper describes an approach for building secure distributed

systems using the concept of confined mobile agents, and demon-
strated this approach in the context of the Mansion mobile agent
system. The Mansion system provides the concept of a confined
room, in which agents are automatically confined such that in-
formation flow from the room is controlled by a trusted guardian
agent, which enforces an information flow policy defined by the
room’s owner.

Agent confinement allows for flexible searching through data
collections with confidential or classified data or intellectual prop-
erty while limiting the capabilities of a user to obtain information
from these data collections. As agents execute locally, theinfor-
mation never leaves its host, except when explicitly allowed by the
confinement policy defined by the data owner. This makes sure that
the data owner stays in control over where or to whom his or her
data is exported. Other than using, for example, watermarking, our
system poses no constraints on the content of the data or its access
mechanism. Rather, it works by using a mechanism whichprevents
data flow, rather than detect information leakage after the fact. To
implement agent confinement securely, we designed a jailingsys-
tem which is specifically intended to prevent information flow from
one jailed process to another.

The examples of using mobile agents as described in this paper
demonstrate a few important benefits of using mobile agents (or
mobile code) confinement:

• Its algorithms can be customized to search for specific con-
tent of raw data.

• Agents access this data locally where the data resides, and
thus can efficiently access this data, and

• Export of the data is controlled by the room (data) owner
using the Guardian Agent, such that an agent can only export
a limited amount of data or record identifiers from a room,
depending on a policy enforced by the guardian agent.

The combination of these properties demonstrate that mobile
agents are an important complement to existing technologies for
building distributed systems. Mobile agents allow for fully cus-
tomized search of (raw) data in order to select suitable datums
which can then be exported from the confined room under con-
ditions set by the data owner.

The Mansion paradigm provides a clear concept for storing and
managing security sensitive data, the confined room. Confined
rooms are marked to contain security sentitive data, and theMan-
sion middleware confines agents in a confined room in such a way
that they can only export information from that room throughthe

room’s guardian agent. Agents can find a (confined) room by fol-
lowing (appropriately annotated) hyperlinks, and search for suit-
able information there. The data filtering mechanism is application
specific and is fully embedded in the guardian agent’s implemen-
tation, and can be adapted to the application’s needs by the data
owner.

For secure applications, careful design of the actual protocols is
important. For example, for a medical application which allows
agents to search through patient records, it is very important that
the format of the internal data is sufficiently structured that the
guardian agent can filter it correctly, to avoid that confidential pa-
tient information is exported accidentally. Such issues are to be
resolved by an application designer; the Mansion system provides
the necessary building blocks (such as the Mansion middleware,
object server and jailing system, and the confined room concept),
but cannot solve all issues that have to be considered for an end
application to be secure. Future research is needed to design and
analyze appropriate protocols for specific applications, such as sen-
sitive medical data. We are currently working on the design of a
guardian agent and its protocols in the context of a world contain-
ing genomic data files.

Building a confinement system is not trivial, as its securityde-
pends on secure confinement mechanisms (i.e., a jailer) and on a
thorough evaluation on whether information from the room can
be exported through weaknesses in the guardian agent’s policies
(which are generally application dependent). However, given that
secure confinement mechanisms such as jailing develop further,
and that policy specification and enforcement are given proper care,
we believe that using confinement of mobile agents or mobile code
is a feasible approach to achieve increased system security, and a
valueable addition to existing instruments for building secure dis-
tributed systems.

Acknowledgements
The authors thank Bruno Crispo and the anonymous reviewers for
useful comments on an earlier version of this paper.Ádám Balogh
and Rutger Hofman are thanked for contributions to the jailing sys-
tem described in this paper. Stichting NLnet is thanked for financial
support.

7. REFERENCES
[1] S. Vinoski. CORBA: Integrating Diverse Applications

Within Distributed Heterogeneous Environments.IEEE
Communications Magazine, 14(2), February 1997.

[2] M. van Steen; P. Homburg; A.S. Tanenbaum. Globe: A
Wide-Area Distributed System.IEEE Concurrency,
January-March 1999.

[3] B.C. Popescu; M. van Steen; A.S. Tanenbaum. A Security
Architecture for Object-Based Distributed Systems.Proc.
18th IEEE Annual Computer Security Applications
Conference, December 2002. pp. 161-171.

[4] IBM. Web Services Security (WS-Security). 2002.
http://www-106.ibm.com/
developerworks/webservices/library/ws-secure/.

[5] I. Cox; J. Kilian; T. Leighton; T. Shamoon. Secure Spread
Spectrum Watermarking for Multimedia.IEEE Transactions
on Image Processing vol. 6, no. 12, pages 1673–1687, 1997.

[6] A.M. Eskicioglu; J. Town; E.J. Delp. Security of Digital
Entertainment Content from Creation to Consumption.
Signal Processing: Image Communication, 18(4), pages
237–262, 2003.

[7] D. Milojicic; F. Douglis; R. Wheeler, eds. Mobility:
processes, computers and agents.ACM Press, 1999.

[8] S.G. Belmon; B.S. Yee. Mobile agents and Intellectual
property protection.Rothermel and Hohl, eds. Proc. 2nd Int’l
workshop on Mobile Agents (MA), LNCS 1477, Springer
Verlag, pages 172–182, 1998.

[9] G. Vigna (ed.). Mobile Agents and Security.LNCS 1419,
1998. Springer-Verlag.

[10] G.J. van ’t Noordende; F.M.T. Brazier; A.S. Tanenbaum.
Security in a Mobile Agent System.1st IEEE Symposium on
Multi-Agent Security and Survivability, 2004. Philadelphia,
PA.

[11] G.J. van ’t Noordende; A. Balogh; R.F.H. Hofman; F.M.T.
Brazier; A.S. Tanenbaum. A Secure and Portable Jailing
System.Technical Report IR-CS-025, Vrije Universiteit,
October 2006.

[12] T. Garfinkel. Traps and Pitfalls: Practical Problems in
System Call Interception Based Security Tools.Proc.
Symposium on Network and Distributed System Security
(NDSS), 2003. pp. 163-176.

[13] A. Fuggetta; G.P. Picco; G. Vigna. Understanding Code
Mobility. IEEE Transactions on Software Engineering, vol.
24, no. 5, pages 342–361, 1998.

[14] B. Walker; G. Popek; R. English; C. Kline; G. Thiel. The
LOCUS distributed operating system.Proc. 9th Symposium
on Operating Systems Principles (SOSP), pages 49–70,
November 1983.

[15] N. Suri; J.M. Bradshaw; M.R. Breedy; P.T. Groth; G.A. Hill;
R. Jeffers. Strong mobility and fine-grained resource control
in NOMADS. Proc. Symposium on Agent Systems and
Applications / Mobile Agents (ASA/MA), pages 2–15, 2000.

[16] L. Bettini; R. De Nicola. Translating Strong Mobility into
Weak Mobility.Proc. 5th International Conference on
Mobile Agents (MA), 2001.

[17] A.J. Chakravarti; X. Wang; J.O. Hallstrom; G. Baumgartner.
Implementation of Strong Mobility for Multi-Threaded
Agents in Java.Proc. International Conference on Parallel
Processing (ICPP), 2003.

[18] T. Sakamoto; T. Sekiguchi; A. Yonezawa. Bytecode
Transformation for Portable Thread Migration in Java.Agent
Systems, Mobile Agents, and Applications (LNCS 1882),
pages 16–28, 2000.

[19] S. Funfrocken. Transparent Migration of Java-Based Mobile
Agents: Capturing and Reestablishing the State of Java
Programs.Proc. 2nd International Workshop on Mobile
Agents (MA), pages 26–37, september 1998.

[20] W. Binder; J.G. Hulaas; A. Villazón. Portable Resource
Control in Java - The J-SEAL2 Approach.Proc. 16th. ACM
SIGPLAN Conf. on Object Oriented Programming, Systems,
Languages and Applications (OOPSLA), 2001.

[21] V. Roth; U. Pinsdorf; J. Peters. A Distributed Content-Based
Search Engine Based on Mobile Code.Proceedings of the
2005 ACM symposium on Applied computing (session:
Agents, interactions, mobility and systems (AIMS)), New
Mexico, pages 66–73, 2005.

[22] J.E. White. Telescript Technology: Mobile Agents.White
paper, General Magic, 1996.

[23] J. Baumann; F. Hohl; M. Strasser; K. Rothermel. Mole -
Concepts of a Mobile Agent System.Technical Report,
Universität Stuttgart, August 1997.

[24] N. Karnik and A. Tripathi. Security in the Ajanta Mobile

Agent System.Software - Practice and Experience 31(4),
2001. pp. 301-329.

[25] D. Lange and M. Othima. Mobile Agents with Java: The
Aglet API. World Wide Web 1(3), September 1998.

[26] R.S. Gray; D. Kotz; G. Cybenko; D. Rus. D’Agents:
Security in a Multiple-language, Mobile-agent System.
Mobile Agents and Security, 1998. LNCS 1419,
Springer-Verlag pp. 154-187.

[27] H. Peine and T. Stolpmann. The Architecture of the Ara
Platform for Mobile Agents.Proc. First Int’l Workshop on
Mobile Agents, 1997. LNCS 1219, Springer-Verlag.

[28] D. Johansen; R. van Renesse; F.B. Schneider. Operating
systems support for mobile agents.5th Workshop on Hot
Topics in Operating Systems, 1995. pp. 42-45.

[29] N.J.E. Wijngaards; B.J. Overeinder; M. van Steen; F.M.T.
Brazier. Supporting Internet-Scale Multi-Agent Systems.
Data and Knowledge Engineering 41(2-3), 2002. pp.
229-245.

[30] V. Roth; M. Jalali-Sohi. Concepts and Architecture of a
Security-Centric Mobile Agent Server.Proc. 5th
International Symposium on Autonomous Decentralized
Systems (ISADS), page 435, 2001.

[31] N. Provos. Improving Host Security with System Call
Policies.Proc. 12th USENIX Security Symposium, August
2003. pp. 257-272.

[32] T. Garfinkel; B. Pfaff; M. Rosenblum. Ostia: A Delegating
Architecture for Secure System Call Interposition.Proc.
ISOC Network and Distributed System Security Symposium
(NDSS), 2004. .

[33] I. Goldberg; D. Wagner; R. Thomas; E.A. Brewer. A Secure
Environment for Untrusted Helper Applications - Confining
the Wily Hacker.Proc. 6th Usenix Security Symposium,
1996. San Jose, CA, USA.

[34] K. Jain; R. Sekar. User-Level Infrastructure for System Call
Interposition: A Platform for Intrusion detection and
Confinement.ISOC Network and Distributed System
Security Symposium (NDSS), 2000. pp. 19-34.

[35] T. Shinagawa; K. Kono; T. Masuda. Flexible and Efficient
Sandboxing Based on Fine-Grained Protection Domains.
ISSS, 2002. pp. 172-184.

[36] D.S. Peterson; M. Bishop; R. Pandey. A Flexible
Containment Mechanism for Executing Untrusted Code.
Usenix Security Symposium, 2002.

[37] W. Binder and V. Roth. Secure mobile agent systems using
Java: where are we heading?Proceedings of the 2002 ACM
Symposium on Applied Computing, 2002. pp. 115-119.

[38] G. Back; W.C. Hsieh; J. Lepreau. Processes in KaffeOS:
Isolation, Resource Management, and Sharing in Java.Proc.
4th Symposium on Operating Systems Design and
Implementation (OSDI), San Diego, CA., pages 333–346,
October 2000.

